論文の概要: Towards Foundation Models for Critical Care Time Series
- arxiv url: http://arxiv.org/abs/2411.16346v1
- Date: Mon, 25 Nov 2024 12:49:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:23:57.052070
- Title: Towards Foundation Models for Critical Care Time Series
- Title(参考訳): 要介護時系列の基礎モデルに向けて
- Authors: Manuel Burger, Fedor Sergeev, Malte Londschien, Daphné Chopard, Hugo Yèche, Eike Gerdes, Polina Leshetkina, Alexander Morgenroth, Zeynep Babür, Jasmina Bogojeska, Martin Faltys, Rita Kuznetsova, Gunnar Rätsch,
- Abstract要約: 本稿では,コア処理変数を含む最初の大規模コレクションとして,シーケンスモデリングと転送学習研究のための調和データセットを提案する。
将来的には、このデータセットを拡張して、トランスファーラーニングのさらなる進歩と、重要な医療アプリケーションのためのスケーラブルで汎用的なモデルの開発をサポートする予定だ。
- 参考スコア(独自算出の注目度): 38.09906416210531
- License:
- Abstract: Notable progress has been made in generalist medical large language models across various healthcare areas. However, large-scale modeling of in-hospital time series data - such as vital signs, lab results, and treatments in critical care - remains underexplored. Existing datasets are relatively small, but combining them can enhance patient diversity and improve model robustness. To effectively utilize these combined datasets for large-scale modeling, it is essential to address the distribution shifts caused by varying treatment policies, necessitating the harmonization of treatment variables across the different datasets. This work aims to establish a foundation for training large-scale multi-variate time series models on critical care data and to provide a benchmark for machine learning models in transfer learning across hospitals to study and address distribution shift challenges. We introduce a harmonized dataset for sequence modeling and transfer learning research, representing the first large-scale collection to include core treatment variables. Future plans involve expanding this dataset to support further advancements in transfer learning and the development of scalable, generalizable models for critical healthcare applications.
- Abstract(参考訳): 様々な医療分野の一般の医療大言語モデルで顕著な進歩が見られた。
しかし, 病院内時系列データ(バイタルサイン, 検査結果, 治療処置など)の大規模モデリングはいまだに不十分である。
既存のデータセットは比較的小さいが、それらを組み合わせることで患者の多様性を高め、モデルの堅牢性を向上させることができる。
これらの組み合わせデータセットを大規模モデリングに効果的に活用するためには、異なるデータセット間での処理変数の調和を必要とする、さまざまな処理ポリシーによる分散シフトに対処することが不可欠である。
本研究の目的は、クリティカルケアデータに基づく大規模多変量時系列モデルをトレーニングするための基盤を確立し、病院間での転院学習における機械学習モデルのベンチマークを提供し、分散シフトの課題を研究・解決することである。
本稿では,コア処理変数を含む最初の大規模コレクションとして,シーケンスモデリングと転送学習研究のための調和データセットを提案する。
将来的には、このデータセットを拡張して、トランスファーラーニングのさらなる進歩と、重要な医療アプリケーションのためのスケーラブルで汎用的なモデルの開発をサポートする予定だ。
関連論文リスト
- Promoting cross-modal representations to improve multimodal foundation models for physiological signals [3.630706646160043]
マスク付きオートエンコーディング目標を用いて,マルチモーダルモデルの事前学習を行う。
このモデルでは,様々な下流タスクに対して線形に探索できる表現を学習できることが示されている。
クロスモダリティを誘導する明示的な手法は、マルチモーダル事前訓練戦略を強化する可能性があると論じる。
論文 参考訳(メタデータ) (2024-10-21T18:47:36Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
網膜疾患診断のための堅牢なディープラーニングモデルの開発には、トレーニングのためのかなりのデータセットが必要である。
より小さなデータセットで効果的に一般化する能力は、依然として永続的な課題である。
さまざまなデータソースを組み合わせて、パフォーマンスを改善し、新しいデータに一般化しています。
論文 参考訳(メタデータ) (2024-09-17T17:22:35Z) - CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare [12.218718086529462]
本研究は中国における総合医療ベンチマーク(CMB)に焦点を当てる。
私たちは、より大きなモデルに匹敵するスコアを得るために、より小さなベースモデルをトレーニングしました。
幅広い指導内容を統合することで,データ品質の不整合などの潜在的な問題に対処する。
論文 参考訳(メタデータ) (2024-07-29T05:00:48Z) - Data Augmentation for Multivariate Time Series Classification: An Experimental Study [1.5390962520179197]
これらのデータセットのサイズは限られていますが、RocketとInceptionTimeモデルを使用して、13のデータセットのうち10の分類精度を向上しました。
これは、コンピュータビジョンで見られる進歩と並行して、効果的なモデルを訓練する上で、十分なデータの重要性を強調している。
論文 参考訳(メタデータ) (2024-06-10T17:58:02Z) - Intensive Care as One Big Sequence Modeling Problem [1.6114012813668932]
本稿では、患者と医療提供者とのインタラクションをイベントストリームとして表現する、シーケンスモデリングとしてのヘルスケアのパラダイムを提案する。
我々はMIMIC-IVデータセットから一様イベントストリームフォーマットに異種臨床記録を変換したシーケンスモデリングベンチマークMIMIC-SEQを開発した。
論文 参考訳(メタデータ) (2024-02-27T13:36:55Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。