論文の概要: Rank-based loss for learning hierarchical representations
- arxiv url: http://arxiv.org/abs/2110.05941v1
- Date: Mon, 11 Oct 2021 10:32:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-14 09:40:47.702046
- Title: Rank-based loss for learning hierarchical representations
- Title(参考訳): 階層表現学習のためのランクベース損失
- Authors: Ines Nolasco and Dan Stowell
- Abstract要約: 機械学習では、"extra"情報を使用するメソッドのファミリーを階層分類(hierarchical classification)と呼ぶ。
ここでは、階層的関係を表す埋め込みを学習するために、問題の階層的情報を統合する方法に焦点を当てる。
ランクに基づく損失はデータの階層的表現を学習するのに適していることを示す。
- 参考スコア(独自算出の注目度): 7.421724671710886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hierarchical taxonomies are common in many contexts, and they are a very
natural structure humans use to organise information. In machine learning, the
family of methods that use the 'extra' information is called hierarchical
classification. However, applied to audio classification, this remains
relatively unexplored. Here we focus on how to integrate the hierarchical
information of a problem to learn embeddings representative of the hierarchical
relationships. Previously, triplet loss has been proposed to address this
problem, however it presents some issues like requiring the careful
construction of the triplets, and being limited in the extent of hierarchical
information it uses at each iteration. In this work we propose a rank based
loss function that uses hierarchical information and translates this into a
rank ordering of target distances between the examples. We show that rank based
loss is suitable to learn hierarchical representations of the data. By testing
on unseen fine level classes we show that this method is also capable of
learning hierarchically correct representations of the new classes. Rank based
loss has two promising aspects, it is generalisable to hierarchies with any
number of levels, and is capable of dealing with data with incomplete
hierarchical labels.
- Abstract(参考訳): 階層的な分類学は多くの文脈で一般的であり、人間が情報を整理するために使う非常に自然な構造である。
機械学習では、"extra"情報を使用するメソッドのファミリーを階層分類(hierarchical classification)と呼ぶ。
しかし、音声分類に当てはまると、これは比較的未解明である。
本稿では,問題の階層的情報を統合して階層的関係を表現する組込みを学習する方法に焦点を当てる。
これまで、この問題に対処するために三重項損失が提案されていたが、三重項の注意深い構成が必要であり、各イテレーションで使用する階層的な情報の範囲に制限があるなど、いくつかの問題がある。
本研究では,階層的情報を用いたランクに基づく損失関数を提案し,これを例間の目標距離のランク順に変換する。
ランクに基づく損失はデータの階層的表現を学習するのに適していることを示す。
未確認の細粒度クラスをテストすることで、この手法が新しいクラスの階層的に正しい表現を学習できることを示す。
ランクベースの損失には2つの有望な側面があり、任意のレベルの階層に一般化可能であり、不完全な階層ラベルでデータを扱うことができる。
関連論文リスト
- Hierarchical Query Classification in E-commerce Search [38.67034103433015]
電子商取引プラットフォームは通常、製品情報と検索データを階層構造に保存し、構造化する。
ユーザ検索クエリを同様の階層構造に効果的に分類することは,eコマースプラットフォーム上でのユーザエクスペリエンスの向上,ニュースキュレーションや学術研究において最重要である。
階層的問合せ分類の本質的な複雑さは,(1)支配的カテゴリに傾倒する顕著なクラス不均衡,(2)正確な分類を妨げる検索クエリの本質的簡潔さとあいまいさの2つの課題によって複雑化されている。
論文 参考訳(メタデータ) (2024-03-09T21:55:55Z) - Learning List-Level Domain-Invariant Representations for Ranking [59.3544317373004]
リストレベルのアライメント -- より高いレベルのリストでドメイン不変表現を学習する。
利点は2つある: これは、ランク付けに縛られる最初のドメイン適応の一般化をもたらし、その結果、提案法に対する理論的支援を提供する。
論文 参考訳(メタデータ) (2022-12-21T04:49:55Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
本稿では,すべての利用可能なラベルを活用でき,クラス間の階層的関係を維持できる階層型多言語表現学習フレームワークを提案する。
比較損失に階層的ペナルティを併用し,その階層的制約を強制する。
論文 参考訳(メタデータ) (2022-04-27T21:41:44Z) - Label Hierarchy Transition: Delving into Class Hierarchies to Enhance
Deep Classifiers [40.993137740456014]
本稿では,階層型分類の課題に対処するために,ディープラーニングに基づく統一確率的フレームワークを提案する。
提案するフレームワークは、わずかに修正するだけで、既存のディープネットワークに容易に適応できる。
提案するLHTフレームワークを皮膚病変診断タスクに拡張し,コンピュータ支援診断におけるその大きな可能性を検証した。
論文 参考訳(メタデータ) (2021-12-04T14:58:36Z) - TagRec: Automated Tagging of Questions with Hierarchical Learning
Taxonomy [0.0]
オンライン教育プラットフォームは、階層的な学習分類に基づく学術的な質問を組織する
本稿では,分類学と質問のセマンティック関連性を最適化する類似性に基づく検索タスクとして,問題を定式化する。
本研究では,本手法が未確認ラベルの扱いに役立ち,野生の分類学的タグ付けに有効であることを示す。
論文 参考訳(メタデータ) (2021-07-03T11:50:55Z) - MATCH: Metadata-Aware Text Classification in A Large Hierarchy [60.59183151617578]
MATCHはメタデータと階層情報の両方を利用するエンドツーエンドのフレームワークである。
親による各子ラベルのパラメータと出力確率を正規化するさまざまな方法を提案します。
大規模なラベル階層を持つ2つの大規模なテキストデータセットの実験は、MATCHの有効性を示しています。
論文 参考訳(メタデータ) (2021-02-15T05:23:08Z) - Pitfalls of Assessing Extracted Hierarchies for Multi-Class
Classification [4.89253144446913]
私たちは、実践者がメソッドについて誤解を招くような結論を下すかもしれない、一般的な落とし穴を特定します。
階層の質が実験的な設定によってどう無関係になるかを示す。
その結果,多くのクラスを持つデータセットは,これらのクラスが相互に関係する複雑な構造を持つことが明らかとなった。
論文 参考訳(メタデータ) (2021-01-26T21:50:57Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
アーキテクチャがノイズラベルによる学習に与える影響について検討する。
ノイズラベルを用いたトレーニングは,モデルが一般化に乏しい場合でも,有用な隠れ表現を誘導できることを示す。
この発見は、騒々しいラベルで訓練されたモデルを改善する簡単な方法につながります。
論文 参考訳(メタデータ) (2020-12-23T18:58:05Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
提案手法は,Recall@50において,複数の最先端ベースラインを大きなマージン(最大33%の相対利得)で改善することができる。
実験により,提案手法により,最先端のベースラインを大きなマージンで改善できることが示された。
論文 参考訳(メタデータ) (2020-09-12T17:36:53Z) - Hierarchical Class-Based Curriculum Loss [18.941207332233805]
ほとんどの実世界のデータにはラベル間の依存関係があり、階層構造を使ってキャプチャできる。
i) ラベル空間に存在する階層的制約を満たすことと, (ii) 階層のレベルに基づいてラベルに一様でない重みを与えるという2つの特性を持つ損失関数, 階層的カリキュラム損失を提案する。
論文 参考訳(メタデータ) (2020-06-05T18:48:57Z) - Structured Prediction with Partial Labelling through the Infimum Loss [85.4940853372503]
弱い監督の目標は、収集コストの安いラベル付け形式のみを使用してモデルを学習できるようにすることである。
これは、各データポイントに対して、実際のものを含むラベルのセットとして、監督がキャストされる不完全なアノテーションの一種です。
本稿では、構造化された予測と、部分的なラベリングを扱うための無限損失の概念に基づく統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-03-02T13:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。