Plastic Arbor: a modern simulation framework for synaptic plasticity $\unicode{x2013}$ from single synapses to networks of morphological neurons
- URL: http://arxiv.org/abs/2411.16445v1
- Date: Mon, 25 Nov 2024 14:51:13 GMT
- Title: Plastic Arbor: a modern simulation framework for synaptic plasticity $\unicode{x2013}$ from single synapses to networks of morphological neurons
- Authors: Jannik Luboeinski, Sebastian Schmitt, Shirin Shafiee Kamalabad, Thorsten Hater, Fabian Bösch, Christian Tetzlaff,
- Abstract summary: In humans and other animals, synaptic plasticity processes play a vital role in cognitive functions, including learning and memory.
Recent studies have shown that intracellular molecular processes in dendrites significantly influence single-neuron dynamics.
We have extended the Arbor library to the Plastic Arbor framework, supporting simulations of a large variety of spike-driven plasticity paradigms.
- Score: 0.8796261172196743
- License:
- Abstract: Arbor is a software library designed for efficient simulation of large-scale networks of biological neurons with detailed morphological structures. It combines customizable neuronal and synaptic mechanisms with high-performance computing, supporting multi-core CPU and GPU systems. In humans and other animals, synaptic plasticity processes play a vital role in cognitive functions, including learning and memory. Recent studies have shown that intracellular molecular processes in dendrites significantly influence single-neuron dynamics. However, for understanding how the complex interplay between dendrites and synaptic processes influences network dynamics, computational modeling is required. To enable the modeling of large-scale networks of morphologically detailed neurons with diverse plasticity processes, we have extended the Arbor library to the Plastic Arbor framework, supporting simulations of a large variety of spike-driven plasticity paradigms. To showcase the features of the new framework, we present examples of computational models, beginning with single-synapse dynamics, progressing to multi-synapse rules, and finally scaling up to large recurrent networks. While cross-validating our implementations by comparison with other simulators, we show that Arbor allows simulating plastic networks of multi-compartment neurons at nearly no additional cost in runtime compared to point-neuron simulations. Using the new framework, we have already been able to investigate the impact of dendritic structures on network dynamics across a timescale of several hours, showing a relation between the length of dendritic trees and the ability of the network to efficiently store information. By our extension of Arbor, we aim to provide a valuable tool that will support future studies on the impact of synaptic plasticity, especially, in conjunction with neuronal morphology, in large networks.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
Bio-inspired neural networks have the potential to advance our understanding of neural computation and improve the state-of-the-art of AI systems.
We conduct experiments with autonomous lane-keeping through a photorealistic autonomous driving simulator to evaluate their performance under diverse conditions.
arXiv Detail & Related papers (2023-11-21T13:07:20Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Self-Evolutionary Reservoir Computer Based on Kuramoto Model [1.7072337666116733]
As a biologically inspired neural network, reservoir computing (RC) has unique advantages in processing information.
We propose a structural autonomous development reservoir computing model (sad-RC), which structure can adapt to the specific problem at hand without any human expert knowledge.
arXiv Detail & Related papers (2023-01-25T15:53:39Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity.
We identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules.
arXiv Detail & Related papers (2022-09-30T15:35:04Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
We argue that computational models are key tools for elucidating possible functionalities that emerge from network interactions.
Here we review several classes of models including spiking neurons, integrate and fire neurons.
We hope these studies will inform future developments in artificial intelligence algorithms as well as help validate our understanding of brain processes.
arXiv Detail & Related papers (2022-03-29T10:28:01Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - A multi-agent model for growing spiking neural networks [0.0]
This project has explored rules for growing the connections between the neurons in Spiking Neural Networks as a learning mechanism.
Results in a simulation environment showed that for a given set of parameters it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic algorithms for obtaining the best suited values for the model parameters.
arXiv Detail & Related papers (2020-09-21T15:11:29Z) - Self-organization of multi-layer spiking neural networks [4.859525864236446]
A key mechanism that enables the formation of complex architecture in the developing brain is the emergence of traveling-temporal waves of neuronal activity.
We propose a modular tool-kit in the form of a dynamical system that can be seamlessly stacked to assemble multi-layer neural networks.
Our framework leads to the self-organization of a wide variety of architectures, ranging from multi-layer perceptrons to autoencoders.
arXiv Detail & Related papers (2020-06-12T01:44:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.