Integrating programmable plasticity in experiment descriptions for analog neuromorphic hardware
- URL: http://arxiv.org/abs/2412.03128v1
- Date: Wed, 04 Dec 2024 08:46:06 GMT
- Title: Integrating programmable plasticity in experiment descriptions for analog neuromorphic hardware
- Authors: Philipp Spilger, Eric Müller, Johannes Schemmel,
- Abstract summary: The BrainScaleS-2 neuromorphic architecture has been designed to support "hybrid" plasticity.
observables that are expensive in numerical simulation, such as per-synapse correlation measurements, are implemented directly in the synapse circuits.
We introduce an integrated framework for describing spiking neural network experiments and plasticity rules in a unified high-level experiment description language.
- Score: 0.9217021281095907
- License:
- Abstract: The study of plasticity in spiking neural networks is an active area of research. However, simulations that involve complex plasticity rules, dense connectivity/high synapse counts, complex neuron morphologies, or extended simulation times can be computationally demanding. The BrainScaleS-2 neuromorphic architecture has been designed to address this challenge by supporting "hybrid" plasticity, which combines the concepts of programmability and inherently parallel emulation. In particular, observables that are expensive in numerical simulation, such as per-synapse correlation measurements, are implemented directly in the synapse circuits. The evaluation of the observables, the decision to perform an update, and the magnitude of an update, are all conducted in a conventional program that runs simultaneously with the analog neural network. Consequently, these systems can offer a scalable and flexible solution in such cases. While previous work on the platform has already reported on the use of different kinds of plasticity, the descriptions for the spiking neural network experiment topology and protocol, and the plasticity algorithm have not been connected. In this work, we introduce an integrated framework for describing spiking neural network experiments and plasticity rules in a unified high-level experiment description language for the BrainScaleS-2 platform and demonstrate its use.
Related papers
- NeoHebbian Synapses to Accelerate Online Training of Neuromorphic Hardware [0.03377254151446239]
A novel neoHebbian artificial synapse utilizing ReRAM devices has been proposed and experimentally validated.
System-level simulations, accounting for various device and system-level non-idealities, confirm that these synapses offer a robust solution for the fast, compact, and energy-efficient implementation of advanced learning rules in neuromorphic hardware.
arXiv Detail & Related papers (2024-11-27T12:06:15Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity.
We identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules.
arXiv Detail & Related papers (2022-09-30T15:35:04Z) - An accurate and flexible analog emulation of AdEx neuron dynamics in
silicon [0.0]
This manuscript presents the analog neuron circuits of the mixed-signal accelerated neuromorphic system BrainScaleS-2.
They are capable of flexibly and accurately emulating the adaptive exponential integrate-and-fire model equations in combination with both current- and conductance-based synapses.
arXiv Detail & Related papers (2022-09-19T18:08:23Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.