On the Reconstruction of Training Data from Group Invariant Networks
- URL: http://arxiv.org/abs/2411.16458v1
- Date: Mon, 25 Nov 2024 15:05:00 GMT
- Title: On the Reconstruction of Training Data from Group Invariant Networks
- Authors: Ran Elbaz, Gilad Yehudai, Meirav Galun, Haggai Maron,
- Abstract summary: Reconstructing training data from trained neural networks is an active area of research with significant implications for privacy and explainability.
Recent advances have demonstrated the feasibility of this process for several data types.
However, reconstructing data from group-invariant neural networks poses distinct challenges that remain largely unexplored.
- Score: 26.3215664733825
- License:
- Abstract: Reconstructing training data from trained neural networks is an active area of research with significant implications for privacy and explainability. Recent advances have demonstrated the feasibility of this process for several data types. However, reconstructing data from group-invariant neural networks poses distinct challenges that remain largely unexplored. This paper addresses this gap by first formulating the problem and discussing some of its basic properties. We then provide an experimental evaluation demonstrating that conventional reconstruction techniques are inadequate in this scenario. Specifically, we observe that the resulting data reconstructions gravitate toward symmetric inputs on which the group acts trivially, leading to poor-quality results. Finally, we propose two novel methods aiming to improve reconstruction in this setup and present promising preliminary experimental results. Our work sheds light on the complexities of reconstructing data from group invariant neural networks and offers potential avenues for future research in this domain.
Related papers
- A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
We study the case of non-differentiable activation functions, such as ReLU.
Two recent works introduced a geometric framework to study neural networks.
We illustrate our findings with some numerical experiments on classification of images and thermodynamic problems.
arXiv Detail & Related papers (2024-04-09T08:11:46Z) - Data Augmentations in Deep Weight Spaces [89.45272760013928]
We introduce a novel augmentation scheme based on the Mixup method.
We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate.
arXiv Detail & Related papers (2023-11-15T10:43:13Z) - Deconstructing Data Reconstruction: Multiclass, Weight Decay and General
Losses [28.203535970330343]
Haim et al. (2022) proposed a scheme to reconstruct training samples from multilayer perceptron binary classifiers.
We extend their findings in several directions, including reconstruction from multiclass and convolutional neural networks.
We study the various factors that contribute to networks' susceptibility to such reconstruction schemes.
arXiv Detail & Related papers (2023-07-04T17:09:49Z) - Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness [15.29595828816055]
This work proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm.
We use Transfer Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic algorithm.
Experiments show that our proposal achieves promising results in all the objectives, and direct relation are presented.
arXiv Detail & Related papers (2023-02-20T19:33:38Z) - Understanding Reconstruction Attacks with the Neural Tangent Kernel and
Dataset Distillation [110.61853418925219]
We build a stronger version of the dataset reconstruction attack and show how it can provably recover the emphentire training set in the infinite width regime.
We show that both theoretically and empirically, reconstructed images tend to "outliers" in the dataset.
These reconstruction attacks can be used for textitdataset distillation, that is, we can retrain on reconstructed images and obtain high predictive accuracy.
arXiv Detail & Related papers (2023-02-02T21:41:59Z) - Reconstructing Training Data from Trained Neural Networks [42.60217236418818]
We show in some cases a significant fraction of the training data can in fact be reconstructed from the parameters of a trained neural network classifier.
We propose a novel reconstruction scheme that stems from recent theoretical results about the implicit bias in training neural networks with gradient-based methods.
arXiv Detail & Related papers (2022-06-15T18:35:16Z) - The learning phases in NN: From Fitting the Majority to Fitting a Few [2.5991265608180396]
We analyze a layer's reconstruction ability of the input and prediction performance based on the evolution of parameters during training.
We also assess the behavior using common datasets and architectures from computer vision such as ResNet and VGG.
arXiv Detail & Related papers (2022-02-16T19:11:42Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in
Single-View 3D Reconstruction Networks [16.348294592961327]
We introduce the dispersion score, a new data-driven metric, to quantify this leading factor and study its effect on NNs.
We show that the proposed metric is a principal way to analyze reconstruction quality and provides novel information in addition to the conventional reconstruction score.
arXiv Detail & Related papers (2021-11-30T06:33:35Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.