論文の概要: Efficient Video Face Enhancement with Enhanced Spatial-Temporal Consistency
- arxiv url: http://arxiv.org/abs/2411.16468v1
- Date: Mon, 25 Nov 2024 15:14:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:20:15.717348
- Title: Efficient Video Face Enhancement with Enhanced Spatial-Temporal Consistency
- Title(参考訳): 空間的整合性向上による高能率映像面強調
- Authors: Yutong Wang, Jiajie Teng, Jiajiong Cao, Yuming Li, Chenguang Ma, Hongteng Xu, Dixin Luo,
- Abstract要約: 本研究では,新規で効率的なブラインド・ビデオ・フェース・エンハンスメント法を提案する。
圧縮された低品質バージョンから、効率的なデフリック機構で高品質の動画を復元する。
VFHQ-Testデータセットで行った実験は、我々の手法が現在の最先端のブラインド・フェイス・ビデオの復元と、効率と有効性の両面での解フリック法を超越していることを示している。
- 参考スコア(独自算出の注目度): 36.939731355462264
- License:
- Abstract: As a very common type of video, face videos often appear in movies, talk shows, live broadcasts, and other scenes. Real-world online videos are often plagued by degradations such as blurring and quantization noise, due to the high compression ratio caused by high communication costs and limited transmission bandwidth. These degradations have a particularly serious impact on face videos because the human visual system is highly sensitive to facial details. Despite the significant advancement in video face enhancement, current methods still suffer from $i)$ long processing time and $ii)$ inconsistent spatial-temporal visual effects (e.g., flickering). This study proposes a novel and efficient blind video face enhancement method to overcome the above two challenges, restoring high-quality videos from their compressed low-quality versions with an effective de-flickering mechanism. In particular, the proposed method develops upon a 3D-VQGAN backbone associated with spatial-temporal codebooks recording high-quality portrait features and residual-based temporal information. We develop a two-stage learning framework for the model. In Stage \Rmnum{1}, we learn the model with a regularizer mitigating the codebook collapse problem. In Stage \Rmnum{2}, we learn two transformers to lookup code from the codebooks and further update the encoder of low-quality videos. Experiments conducted on the VFHQ-Test dataset demonstrate that our method surpasses the current state-of-the-art blind face video restoration and de-flickering methods on both efficiency and effectiveness. Code is available at \url{https://github.com/Dixin-Lab/BFVR-STC}.
- Abstract(参考訳): 非常に一般的なタイプのビデオとして、フェイスビデオは映画、トークショー、ライブ放送、その他のシーンにしばしば登場する。
実世界のオンラインビデオは、高い通信コストと限られた伝送帯域幅に起因する高い圧縮率のため、ぼかしや量子化ノイズなどの劣化に悩まされることが多い。
これらの劣化は、人間の視覚系が顔の詳細に非常に敏感であるため、顔ビデオに特に深刻な影響を及ぼす。
ビデオ・フェイス・エンハンスメントの顕著な進歩にもかかわらず、現在の手法では、i)$long processing time と$ii)$ inconsistent space-temporal visual effects (e.g.flickering.)に苦しむ。
本研究では,この2つの課題を克服し,高品質な映像を圧縮した低品質版から有効デフリック機構で復元する,新規で効率的なブラインド・ビデオ・フェイス・エンハンスメント手法を提案する。
特に,提案手法は,高画質のポートレート特徴と残差に基づく時間情報を記録する空間時空間コードブックに関連付けられた3D-VQGANのバックボーン上に展開する。
モデルのための2段階学習フレームワークを開発した。
Rmnum{1} では、コードブック崩壊問題を緩和する正規化器を用いてモデルを学習する。
Stage \Rmnum{2}では、コードブックからコードを探す2つのトランスフォーマーを学び、さらに低品質ビデオのエンコーダを更新する。
VFHQ-Testデータセットで行った実験は、我々の手法が現在の最先端のブラインド・フェイス・ビデオの復元と、効率と有効性の両面での解フリック法を超越していることを示している。
コードは \url{https://github.com/Dixin-Lab/BFVR-STC} で入手できる。
関連論文リスト
- MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
ビデオ処理の課題に対処するための4つの重要なコントリビューションを提示する。
まず,3次元逆ベクトル量子化バリエンコエンコオートコーダを紹介する。
次に,テキスト・ビデオ生成フレームワークであるMotionAuraを紹介する。
第3に,スペクトル変換器を用いたデノナイジングネットワークを提案する。
第4に,Sketch Guided Videopaintingのダウンストリームタスクを導入する。
論文 参考訳(メタデータ) (2024-10-10T07:07:56Z) - DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models [9.145545884814327]
本稿では,事前学習画像復元拡散モデルを用いたゼロショット映像復元手法を提案する。
本手法は,ゼロショット映像復元において最高の性能を発揮することを示す。
本手法は任意の2次元復元拡散モデルで動作し,広範に再トレーニングを行うことなく,映像強調作業のための汎用的で強力なツールを提供する。
論文 参考訳(メタデータ) (2024-07-01T17:59:12Z) - SF-V: Single Forward Video Generation Model [57.292575082410785]
そこで本稿では,単段階ビデオ生成モデルを得るための新しい手法を提案する。
実験により,提案手法は計算オーバーヘッドを大幅に低減した合成ビデオの競合生成品質を実現することを示す。
論文 参考訳(メタデータ) (2024-06-06T17:58:27Z) - Blurry Video Compression: A Trade-off between Visual Enhancement and
Data Compression [65.8148169700705]
既存のビデオ圧縮(VC)手法は主に、ビデオ内の連続フレーム間の空間的および時間的冗長性を減らすことを目的としている。
これまでの研究は、インスタント(既知の)露光時間やシャッタースピードなどの特定の設定で取得されたビデオに対して、顕著な成果を上げてきた。
本研究では,シーン内のカメラ設定やダイナミックスによって,所定の映像がぼやけてしまうという一般的なシナリオにおいて,VCの問題に取り組む。
論文 参考訳(メタデータ) (2023-11-08T02:17:54Z) - GeneFace++: Generalized and Stable Real-Time Audio-Driven 3D Talking
Face Generation [71.73912454164834]
音声-リップ同期の汎用化, 画質の向上, システム効率の向上が期待できる。
NeRFは、数分間のトレーニングビデオで高忠実で3D一貫性のある会話顔生成を実現することができるため、この分野で一般的な技術となっている。
そこで我々は,これらの課題に対処するためにGeneFace++を提案し,ピッチの輪郭を補助的特徴として利用し,顔の動き予測プロセスに時間的損失を導入する。
論文 参考訳(メタデータ) (2023-05-01T12:24:09Z) - Perceptual Quality Assessment of Face Video Compression: A Benchmark and
An Effective Method [69.868145936998]
生成的符号化アプローチは、合理的な速度歪曲トレードオフを持つ有望な代替手段として認識されている。
従来のハイブリッドコーディングフレームワークから生成モデルまで、空間的・時間的領域における歪みの多様さは、圧縮顔画像品質評価(VQA)における大きな課題を提示する。
大規模圧縮顔画像品質評価(CFVQA)データベースを導入し,顔ビデオの知覚的品質と多角化圧縮歪みを体系的に理解するための最初の試みである。
論文 参考訳(メタデータ) (2023-04-14T11:26:09Z) - Multi-modality Deep Restoration of Extremely Compressed Face Videos [36.83490465562509]
我々は,積極的に圧縮された顔映像を復元するための多モードディープ畳み込みニューラルネットワーク手法を開発した。
主な革新は、複数のモダリティの既知の事前を組み込んだ新しいDCNNアーキテクチャである。
フェースビデオ上でのDCNN手法の優れた性能を実証するために, 実験的な証拠を多数提示した。
論文 参考訳(メタデータ) (2021-07-05T16:29:02Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。