Distributing Quantum Computations, Shot-wise
- URL: http://arxiv.org/abs/2411.16530v1
- Date: Mon, 25 Nov 2024 16:16:54 GMT
- Title: Distributing Quantum Computations, Shot-wise
- Authors: Giuseppe Bisicchia, Giuseppe Clemente, Jose Garcia-Alonso, Juan Manuel Murillo RodrÃguez, Massimo D'Elia, Antonio Brogi,
- Abstract summary: NISQ era constraints, high sensitivity to noise and limited qubit count, impose significant barriers on the usability of QPUs.
We propose a methodological framework, termed shot-wise, which enables the distribution of shots for a single circuit across multiple QPUs.
- Score: 1.2061873132374783
- License:
- Abstract: NISQ (Noisy Intermediate-Scale Quantum) era constraints, high sensitivity to noise and limited qubit count, impose significant barriers on the usability of QPUs (Quantum Process Units) capabilities. To overcome these challenges, researchers are exploring methods to maximize the utility of existing QPUs despite their limitations. Building upon the idea that the execution of a quantum circuit's shots needs not to be treated as a singular monolithic unit, we propose a methodological framework, termed shot-wise, which enables the distribution of shots for a single circuit across multiple QPUs. Our framework features customizable policies to adapt to various scenarios. Additionally, it introduces a calibration method to pre-evaluate the accuracy and reliability of each QPU's output before the actual distribution process and an incremental execution mechanism for dynamically managing the shot allocation and policy updates. Such an approach enables flexible and fine-grained management of the distribution process, taking into account various user-defined constraints and (contrasting) objectives. Experimental findings show that while these strategies generally do not exceed the best individual QPU results, they maintain robustness and align closely with average outcomes. Overall, the shot-wise methodology improves result stability and often outperforms single QPU runs, offering a flexible approach to managing variability in quantum computing.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Resource Management and Circuit Scheduling for Distributed Quantum Computing Interconnect Networks [4.0985912998349345]
Distributed quantum computing (DQC) has emerged as a promising approach to overcome the scalability limitations of monolithic quantum processors.
This paper addresses the problem of resource allocation in such networks, focusing on computing resource management in a quantum farm setting.
We propose a multi-objective optimisation algorithm for optimal QPU allocation that aims to minimise the degradation caused by inter-QPU communication latencies.
arXiv Detail & Related papers (2024-09-19T11:39:46Z) - Artificial-Intelligence-Driven Shot Reduction in Quantum Measurement [6.649102874357367]
Variational Quantum Eigensolver (VQE) provides a powerful solution for approximating molecular ground state energies.
Estimate probabilistic outcomes on quantum hardware requires repeated measurements (shots)
This paper proposes a reinforcement learning based approach that automatically learns shot assignment policies to minimize total measurement shots.
arXiv Detail & Related papers (2024-05-03T21:51:07Z) - HamilToniQ: An Open-Source Benchmark Toolkit for Quantum Computers [4.795321943127061]
HamilToniQ is an open-source, application-oriented benchmarking toolkit for the comprehensive evaluation of Quantum Processing Units (QPUs)
It incorporates a methodological framework assessing QPU types, topologies, and multi-QPU systems.
HamilToniQ's standardized score, H-Score, quantifies the fidelity and reliability of QPUs.
arXiv Detail & Related papers (2024-04-22T08:27:14Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Benchmarking the Reliability of Post-training Quantization: a Particular
Focus on Worst-case Performance [53.45700148820669]
Post-training quantization (PTQ) is a popular method for compressing deep neural networks (DNNs) without modifying their original architecture or training procedures.
Despite its effectiveness and convenience, the reliability of PTQ methods in the presence of some extrem cases such as distribution shift and data noise remains largely unexplored.
This paper first investigates this problem on various commonly-used PTQ methods.
arXiv Detail & Related papers (2023-03-23T02:55:50Z) - Q-Pensieve: Boosting Sample Efficiency of Multi-Objective RL Through Memory Sharing of Q-Snapshots [11.533449955841968]
We propose Q-Pensieve, a policy improvement scheme that stores a collection of Q-snapshots to jointly determine the policy update direction.
We show that Q-Pensieve can be naturally integrated with soft policy iteration with convergence guarantee.
arXiv Detail & Related papers (2022-12-06T16:29:47Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.