Artificial-Intelligence-Driven Shot Reduction in Quantum Measurement
- URL: http://arxiv.org/abs/2405.02493v1
- Date: Fri, 3 May 2024 21:51:07 GMT
- Title: Artificial-Intelligence-Driven Shot Reduction in Quantum Measurement
- Authors: Senwei Liang, Linghua Zhu, Xiaolin Liu, Chao Yang, Xiaosong Li,
- Abstract summary: Variational Quantum Eigensolver (VQE) provides a powerful solution for approximating molecular ground state energies.
Estimate probabilistic outcomes on quantum hardware requires repeated measurements (shots)
This paper proposes a reinforcement learning based approach that automatically learns shot assignment policies to minimize total measurement shots.
- Score: 6.649102874357367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational Quantum Eigensolver (VQE) provides a powerful solution for approximating molecular ground state energies by combining quantum circuits and classical computers. However, estimating probabilistic outcomes on quantum hardware requires repeated measurements (shots), incurring significant costs as accuracy increases. Optimizing shot allocation is thus critical for improving the efficiency of VQE. Current strategies rely heavily on hand-crafted heuristics requiring extensive expert knowledge. This paper proposes a reinforcement learning (RL) based approach that automatically learns shot assignment policies to minimize total measurement shots while achieving convergence to the minimum of the energy expectation in VQE. The RL agent assigns measurement shots across VQE optimization iterations based on the progress of the optimization. This approach reduces VQE's dependence on static heuristics and human expertise. When the RL-enabled VQE is applied to a small molecule, a shot reduction policy is learned. The policy demonstrates transferability across systems and compatibility with other wavefunction ansatzes. In addition to these specific findings, this work highlights the potential of RL for automatically discovering efficient and scalable quantum optimization strategies.
Related papers
- Distributing Quantum Computations, Shot-wise [1.2061873132374783]
NISQ era constraints, high sensitivity to noise and limited qubit count, impose significant barriers on the usability of QPUs.
We propose a methodological framework, termed shot-wise, which enables the distribution of shots for a single circuit across multiple QPUs.
arXiv Detail & Related papers (2024-11-25T16:16:54Z) - KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search [0.0]
We evaluate the practicality of Kolmogorov-Arnold Networks (KANs) in quantum state preparation and quantum chemistry.
In quantum state preparation, our results show that in a noiseless scenario, the probability of success and the number of optimal quantum circuit configurations to generate the multi-qubit maximally entangled states are $2$ to $5times$ higher than Multi-Layer perceptions (MLPs)
In tackling quantum chemistry problems, we enhance the recently proposed QAS algorithm by integrating Curriculum Reinforcement Learning (KAN) with a KAN structure instead of the traditional structure.
arXiv Detail & Related papers (2024-06-25T15:17:01Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
We study the scaling of the quantum resources to reach a fixed success probability as the problem size increases.
Our results suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop.
arXiv Detail & Related papers (2023-07-31T18:01:15Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Error mitigation in variational quantum eigensolvers using tailored
probabilistic machine learning [5.630204194930539]
We present a novel method that employs parametric Gaussian process regression (GPR) within an active learning framework to mitigate noise in quantum computations.
We demonstrate the effectiveness of our method on a 2-site Anderson impurity model and a 8-site Heisenberg model, using the IBM open-source quantum computing framework, Qiskit.
arXiv Detail & Related papers (2021-11-16T22:29:43Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
We introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces.
We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments.
arXiv Detail & Related papers (2021-03-28T08:57:22Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.