Transformers are Deep Optimizers: Provable In-Context Learning for Deep Model Training
- URL: http://arxiv.org/abs/2411.16549v1
- Date: Mon, 25 Nov 2024 16:32:11 GMT
- Title: Transformers are Deep Optimizers: Provable In-Context Learning for Deep Model Training
- Authors: Weimin Wu, Maojiang Su, Jerry Yao-Chieh Hu, Zhao Song, Han Liu,
- Abstract summary: We investigate the capability for in-context learning (ICL) to simulate the training process of deep models.
Specifically, we provide an explicit construction of a $(2N+4)L$-layer transformer capable of simulating $L$ gradient descent steps.
We validate our findings on synthetic datasets for 3-layer, 4-layer, and 6-layer neural networks.
- Score: 11.940454262201161
- License:
- Abstract: We investigate the transformer's capability for in-context learning (ICL) to simulate the training process of deep models. Our key contribution is providing a positive example of using a transformer to train a deep neural network by gradient descent in an implicit fashion via ICL. Specifically, we provide an explicit construction of a $(2N+4)L$-layer transformer capable of simulating $L$ gradient descent steps of an $N$-layer ReLU network through ICL. We also give the theoretical guarantees for the approximation within any given error and the convergence of the ICL gradient descent. Additionally, we extend our analysis to the more practical setting using Softmax-based transformers. We validate our findings on synthetic datasets for 3-layer, 4-layer, and 6-layer neural networks. The results show that ICL performance matches that of direct training.
Related papers
- On the Role of Depth and Looping for In-Context Learning with Task Diversity [69.4145579827826]
We study in-context learning for linear regression with diverse tasks.
We show that multilayer Transformers are not robust to even distributional shifts as small as $O(e-L)$ in Wasserstein distance.
arXiv Detail & Related papers (2024-10-29T03:27:56Z) - On the Training Convergence of Transformers for In-Context Classification [20.980349268151546]
This work aims to theoretically study the training dynamics of transformers for in-context classification tasks.
We demonstrate that, for in-context classification of Gaussian mixtures under certain assumptions, a single-layer transformer trained via gradient descent converges to a globally optimal model at a linear rate.
arXiv Detail & Related papers (2024-10-15T16:57:14Z) - Bypassing the Exponential Dependency: Looped Transformers Efficiently Learn In-context by Multi-step Gradient Descent [26.764893400499354]
We show that linear looped Transformers can implement multi-step gradient descent efficiently for in-context learning.
Our results demonstrate that as long as the input data has a constant condition number, $n = O(d)$, the linear looped Transformers can achieve a small error.
arXiv Detail & Related papers (2024-10-15T04:44:23Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability [34.43255978863601]
Several suggest that transformers learn a mesa-optimizer during autorere training.
We show that a stronger assumption related to the moments of data is the sufficient necessary condition that the learned mesa-optimizer can perform.
arXiv Detail & Related papers (2024-05-27T05:41:06Z) - How Do Nonlinear Transformers Learn and Generalize in In-Context Learning? [82.51626700527837]
Transformer-based large language models displayed impressive in-context learning capabilities, where a pre-trained model can handle new tasks without fine-tuning.
We analyze how the mechanics of how Transformer to achieve ICL contribute to the technical challenges of the training problems in Transformers.
arXiv Detail & Related papers (2024-02-23T21:07:20Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Understanding the Difficulty of Training Transformers [120.99980924577787]
We show that unbalanced gradients are not the root cause of the instability of training.
We propose Admin to stabilize the early stage's training and unleash its full potential in the late stage.
arXiv Detail & Related papers (2020-04-17T13:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.