論文の概要: LegoPET: Hierarchical Feature Guided Conditional Diffusion for PET Image Reconstruction
- arxiv url: http://arxiv.org/abs/2411.16629v1
- Date: Mon, 25 Nov 2024 18:05:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:54.030710
- Title: LegoPET: Hierarchical Feature Guided Conditional Diffusion for PET Image Reconstruction
- Title(参考訳): LegoPET:PET画像再構成のための階層的特徴ガイド付き条件拡散
- Authors: Yiran Sun, Osama Mawlawi,
- Abstract要約: ホログラムからの高画質PET画像再構成のための階層的特徴ガイド付き条件拡散モデルであるLegoPETを紹介する。
LegoPETは、cDPMの性能を向上するだけでなく、最近のDLベースのPET画像再構成技術を、視覚的品質とピクセルレベルのPSNR/SSIMメトリクスで上回っている。
- 参考スコア(独自算出の注目度): 0.7366405857677227
- License:
- Abstract: Positron emission tomography (PET) is widely utilized for cancer detection due to its ability to visualize functional and biological processes in vivo. PET images are usually reconstructed from histogrammed raw data (sinograms) using traditional iterative techniques (e.g., OSEM, MLEM). Recently, deep learning (DL) methods have shown promise by directly mapping raw sinogram data to PET images. However, DL approaches that are regression-based or GAN-based often produce overly smoothed images or introduce various artifacts respectively. Image-conditioned diffusion probabilistic models (cDPMs) are another class of likelihood-based DL techniques capable of generating highly realistic and controllable images. While cDPMs have notable strengths, they still face challenges such as maintain correspondence and consistency between input and output images when they are from different domains (e.g., sinogram vs. image domain) as well as slow convergence rates. To address these limitations, we introduce LegoPET, a hierarchical feature guided conditional diffusion model for high-perceptual quality PET image reconstruction from sinograms. We conducted several experiments demonstrating that LegoPET not only improves the performance of cDPMs but also surpasses recent DL-based PET image reconstruction techniques in terms of visual quality and pixel-level PSNR/SSIM metrics. Our code is available at https://github.com/yransun/LegoPET.
- Abstract(参考訳): ポジトロン・エミッション・トモグラフィ(PET)は、生体内で機能的および生物学的過程を可視化する能力により、がん検出に広く利用されている。
PET画像は通常、従来の反復法(OSEM、MLEMなど)を用いて、ヒストグラム化された生データ(シングラム)から再構成される。
近年, 深層学習(DL)法は, 生のシングラムデータをPET画像に直接マッピングすることで, 将来性を示している。
しかし、回帰ベースまたはGANベースのDLアプローチは、しばしば過度に滑らかな画像を生成するか、様々なアーティファクトを導入する。
画像条件拡散確率モデル (cDPM) は、高現実的で制御可能な画像を生成することができる可能性ベースのDL技術の一種である。
cDPMには顕著な長所があるが、異なる領域(例えば、シングラム対画像領域)からの入力画像と出力画像の対応や整合性の維持、収束速度の低下といった課題に直面している。
これらの制約に対処するために,高画質PET画像再構成のための階層的特徴ガイド付き条件拡散モデルであるLegoPETを導入する。
我々は,LegoPETがcDPMの性能を向上するだけでなく,最近のDLベースPET画像再構成技術よりも,視覚的品質と画素レベルのPSNR/SSIM測定値の点で優れていることを示す実験を行った。
私たちのコードはhttps://github.com/yransun/LegoPETで利用可能です。
関連論文リスト
- Image2Points:A 3D Point-based Context Clusters GAN for High-Quality PET
Image Reconstruction [47.398304117228584]
LPETから高品質なSPET画像を再構成する3DポイントベースのコンテキストクラスタGAN(PCC-GAN)を提案する。
臨床とファントムの両方の実験により、PCC-GANは最先端の再建方法よりも優れています。
論文 参考訳(メタデータ) (2024-02-01T06:47:56Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - DULDA: Dual-domain Unsupervised Learned Descent Algorithm for PET image
reconstruction [18.89418916531878]
そこで本研究では,学習された適切なアルゴリズムに基づいて,二重領域の非教師付きPET画像再構成手法を提案する。
具体的には、PET画像再構成問題に対して、学習可能なl2,1ノルムで勾配法をアンロールする。
実験結果から,提案手法の性能を最大予測最大化(MLEM),全変量正規化EM(EM-TV),深部画像優先法(DIP)と比較した。
論文 参考訳(メタデータ) (2023-03-08T15:29:17Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
低照度画像強調(LLIE)の課題を考察し,4K解像度と8K解像度の画像からなる大規模データベースを導入する。
我々は、系統的なベンチマーク研究を行い、現在のLLIEアルゴリズムと比較する。
第2のコントリビューションとして,変換器をベースとした低照度化手法であるLLFormerを紹介する。
論文 参考訳(メタデータ) (2022-12-22T09:05:07Z) - List-Mode PET Image Reconstruction Using Deep Image Prior [3.6427817678422016]
PET(List-mode positron emission tomography)画像再構成はPETスキャナーにとって重要なツールである。
深層学習はPET画像再構成の品質を高める1つの方法である。
本研究では,Deep image priorと呼ばれる教師なしCNNを用いた新しいPET画像再構成手法を提案する。
論文 参考訳(メタデータ) (2022-04-28T10:44:33Z) - Direct PET Image Reconstruction Incorporating Deep Image Prior and a
Forward Projection Model [0.0]
畳み込みニューラルネットワーク(CNN)は近年,PET画像再構成において顕著な性能を発揮している。
深層画像前処理を組み込んだ非教師なし直接PET画像再構成手法を提案する。
提案手法は,非教師なしPET画像再構成を実現するために,損失関数付き前方投影モデルを組み込んだ。
論文 参考訳(メタデータ) (2021-09-02T08:07:58Z) - Direct Reconstruction of Linear Parametric Images from Dynamic PET Using
Nonlocal Deep Image Prior [13.747210115485487]
PETシングラムからパラメトリック画像を直接推定する直接再構成法が開発されている。
受信回数が限られているため、信号対雑音比(SNR)と直接再構成フレームワークによって生成されたパラメトリック画像の解像度は依然として限られている。
近年,多数の高品質なトレーニングラベルが利用可能である場合に,医用画像復調・復調に教師付き深層学習法がうまく応用されている。
論文 参考訳(メタデータ) (2021-06-18T21:30:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。