論文の概要: PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2411.16750v2
- Date: Thu, 17 Apr 2025 18:32:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-21 15:46:21.271678
- Title: PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
- Title(参考訳): PriorDiffusion: 単眼深度推定のための拡散モデルに先立つレバレッジ言語
- Authors: Ziyao Zeng, Jingcheng Ni, Daniel Wang, Patrick Rim, Younjoon Chung, Fengyu Yang, Byung-Woo Hong, Alex Wong,
- Abstract要約: 拡散モデルのテキスト・ツー・イメージ事前学習において得られた帰納的バイアスを活用することにより,先行言語は単眼深度推定を向上させることができると論じる。
本稿では,アフィン不変深度を推定するために,画像と対応するテキスト記述を併用した事前学習型テキスト・画像拡散モデルを提案する。
- 参考スコア(独自算出の注目度): 10.856377349228927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional monocular depth estimation suffers from inherent ambiguity and visual nuisance. We argue that language prior can enhance monocular depth estimation by leveraging the inductive bias learned during the text-to-image pre-training of diffusion models. The ability of these models to generate images that align with text indicates that they have learned the spatial relationships, size, and shape of specified objects, which can be applied to improve depth estimation. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both images and corresponding text descriptions to infer affine-invariant depth through a denoising process. We also show that language prior enhances the model's perception of specific regions of images that users care about and describe. Simultaneously, language prior acts as a constraint to accelerate the convergence of both training and the inference diffusion trajectory. By training on HyperSim and Virtual KITTI, we achieve faster training convergence, fewer inference diffusion steps, and state-of-the-art zero-shot performance across NYUv2, KITTI, ETH3D, and ScanNet. Code will be released upon acceptance.
- Abstract(参考訳): 従来の単分子深度推定は、固有の曖昧さと視覚的ニュアンスに悩まされている。
拡散モデルのテキスト・ツー・イメージ事前学習において得られた帰納的バイアスを活用することにより,先行言語は単眼深度推定を向上させることができると論じる。
これらのモデルがテキストに一致した画像を生成する能力は、特定の物体の空間的関係、大きさ、形状を学習したことを示している。
そこで本稿では,画像と対応するテキスト記述の両方を抽出し,デノナイズ処理を通じてアフィン不変深度を推定する事前学習型テキスト・画像拡散モデルを提案する。
また,先行言語は,ユーザが興味を持って記述する画像の特定の領域に対する認識を高めることも示している。
同時に、言語事前は訓練と推論拡散軌跡の収束を加速する制約として機能する。
HyperSimとVirtual KITTIのトレーニングにより、高速なトレーニング収束、推論拡散ステップの削減、NYUv2、KITTI、ETH3D、ScanNetにおける最先端のゼロショットパフォーマンスを実現する。
コードは受理時にリリースされる。
関連論文リスト
- Language Driven Occupancy Prediction [11.208411421996052]
オープン語彙占有予測のための効果的で一般化可能なフレームワークであるLOccを紹介する。
私たちのパイプラインは、画像の貴重な意味情報を掘り下げるための、実現可能な方法を提供します。
LOccは生成された言語基底の真実を効果的に利用し、3D言語ボリュームの学習をガイドする。
論文 参考訳(メタデータ) (2024-11-25T03:47:10Z) - Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
テキストと画像の拡散モデルに光を流す新しいHOI検出器であるDIFfusionHOIを紹介する。
まず、埋め込み空間における人間と物体の関係パターンの表現をインバージョンベースで学習する戦略を考案する。
これらの学習された関係埋め込みはテキストのプロンプトとして機能し、スタイア拡散モデルが特定の相互作用を記述する画像を生成する。
論文 参考訳(メタデータ) (2024-10-26T12:00:33Z) - Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models [57.37244894146089]
Diff2Sceneは、テキスト画像生成モデルからの凍結表現と、サルエント・アウェアと幾何学的アウェアマスクを併用して、オープンな3次元セマンティックセマンティックセグメンテーションと視覚的グラウンドニングタスクに活用する。
競争ベースラインを上回り、最先端の手法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2024-07-18T16:20:56Z) - OV9D: Open-Vocabulary Category-Level 9D Object Pose and Size Estimation [56.028185293563325]
本稿では,新しい開集合問題,開語彙圏レベルのオブジェクトポーズとサイズ推定について検討する。
まずOO3D-9Dという大規模フォトリアリスティックなデータセットを紹介した。
次に、事前学習したDinoV2とテキストから画像への安定拡散モデルに基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-19T03:09:24Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
近年のテキスト・トゥ・イメージ(T2I)拡散モデルでは、既成の高密度予測器では予測できないことがある。
我々は,事前学習したT2Iモデルを用いたパイプラインDMPを,高密度予測タスクの先駆けとして導入する。
限られたドメインのトレーニングデータにもかかわらず、この手法は任意の画像に対して忠実に推定し、既存の最先端のアルゴリズムを超越する。
論文 参考訳(メタデータ) (2023-11-30T18:59:44Z) - Learning to Adapt CLIP for Few-Shot Monocular Depth Estimation [31.34615135846137]
単眼深度推定に視覚言語モデルを適用することを学習する,数発のショットベース手法を提案する。
具体的には、異なるシーンに異なる深度ビンを割り当て、推論中にモデルによって選択できる。
トレーニング用シーンあたりのイメージが1つしかないため、NYU V2とKITTIデータセットによる大規模な実験結果から、我々の手法が従来の最先端の手法を最大10.6%上回っていることが示された。
論文 参考訳(メタデータ) (2023-11-02T06:56:50Z) - Discffusion: Discriminative Diffusion Models as Few-shot Vision and Language Learners [88.07317175639226]
本稿では,事前学習したテキストと画像の拡散モデルを数ショットの識別学習者に変換する新しい手法,DSDを提案する。
本手法は, 安定拡散モデルにおいて, 視覚情報とテキスト情報の相互影響を捉えるために, クロスアテンションスコアを用いている。
論文 参考訳(メタデータ) (2023-05-18T05:41:36Z) - Vox-E: Text-guided Voxel Editing of 3D Objects [14.88446525549421]
大規模テキスト誘導拡散モデルが注目されているのは、多様な画像を合成できるためである。
本稿では,既存の3次元オブジェクトの編集に潜時拡散モデルのパワーを利用する手法を提案する。
論文 参考訳(メタデータ) (2023-03-21T17:36:36Z) - Unleashing Text-to-Image Diffusion Models for Visual Perception [84.41514649568094]
VPD (Visual Perception with a pre-trained diffusion model) は、視覚知覚タスクにおいて、事前訓練されたテキスト・画像拡散モデルの意味情報を利用する新しいフレームワークである。
本稿では,提案したVPDを用いて,下流の視覚的タスクに迅速に適応できることを示す。
論文 参考訳(メタデータ) (2023-03-03T18:59:47Z) - LiP-Flow: Learning Inference-time Priors for Codec Avatars via
Normalizing Flows in Latent Space [90.74976459491303]
実行時入力に条件付けされた先行モデルを導入し、この先行空間を潜伏空間の正規化フローを介して3次元顔モデルに結びつける。
正規化フローは2つの表現空間をブリッジし、潜在サンプルをある領域から別の領域に変換することで、潜在可能性の目的を定義する。
提案手法は,表情のダイナミックスや微妙な表現をよりよく捉えることによって,表現的かつ効果的に先行することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:22:57Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
最近のTransformerベースの大規模事前学習モデルは、視覚言語(V+L)研究に革命をもたらした。
VALUEは,マルチモーダル事前学習における内部動作の解明を目的とした,精密に設計された探索タスクのセットである。
主要な観察:事前訓練されたモデルは、推論中の画像よりもテキストに出席する傾向を示す。
論文 参考訳(メタデータ) (2020-05-15T01:06:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。