Hyperspectral Image Cross-Domain Object Detection Method based on Spectral-Spatial Feature Alignment
- URL: http://arxiv.org/abs/2411.16772v1
- Date: Mon, 25 Nov 2024 06:42:06 GMT
- Title: Hyperspectral Image Cross-Domain Object Detection Method based on Spectral-Spatial Feature Alignment
- Authors: Hongqi Zhang, He Sun, Hongmin Gao, Feng Han, Xu Sun, Lianru Gao, Bing Zhang,
- Abstract summary: In this work, we aim to explore the unsupervised cross-domain object detection of hyperspectral images.
Our key observation is that the local spatial-spectral characteristics remain invariant across different domains.
For solving the problem of domain-shift, we propose a HSI cross-domain object detection method based on spectral-spatial feature alignment.
- Score: 18.384882910944622
- License:
- Abstract: With consecutive bands in a wide range of wavelengths, hyperspectral images (HSI) have provided a unique tool for object detection task. However, existing HSI object detection methods have not been fully utilized in real applications, which is mainly resulted by the difference of spatial and spectral resolution between the unlabeled target domain and a labeled source domain, i.e. the domain shift of HSI. In this work, we aim to explore the unsupervised cross-domain object detection of HSI. Our key observation is that the local spatial-spectral characteristics remain invariant across different domains. For solving the problem of domain-shift, we propose a HSI cross-domain object detection method based on spectral-spatial feature alignment, which is the first attempt in the object detection community to the best of our knowledge. Firstly, we develop a spectral-spatial alignment module to extract domain-invariant local spatial-spectral features. Secondly, the spectral autocorrelation module has been designed to solve the domain shift in the spectral domain specifically, which can effectively align HSIs with different spectral resolutions. Besides, we have collected and annotated an HSI dataset for the cross-domain object detection. Our experimental results have proved the effectiveness of HSI cross-domain object detection, which has firstly demonstrated a significant and promising step towards HSI cross-domain object detection in the object detection community.
Related papers
- United Domain Cognition Network for Salient Object Detection in Optical Remote Sensing Images [21.76732661032257]
We propose a novel United Domain Cognition Network (UDCNet) to jointly explore the global-local information in the frequency and spatial domains.
Experimental results demonstrate the superiority of the proposed UDCNet over 24 state-of-the-art models.
arXiv Detail & Related papers (2024-11-11T04:12:27Z) - SpecDETR: A Transformer-based Hyperspectral Point Object Detection Network [32.7318504162588]
Hyperspectral target detection (HTD) aims to identify materials based on spectral information in hyperspectral imagery and can detect point targets.
Existing HTD methods are developed based on per-pixel binary classification, which limits the feature representation capability for point targets.
We propose the first specialized network for hyperspectral multi-class point object detection, SpecDETR.
We develop a simulated hyperSpectral Point Object Detection benchmark termed SPOD, and for the first time, evaluate and compare the performance of current object detection networks and HTD methods on hyperspectral multi-class point object detection.
arXiv Detail & Related papers (2024-05-16T14:45:06Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
Single Domain Generalization tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain.
We propose to leverage a pre-trained vision-language model to introduce semantic domain concepts via textual prompts.
We achieve this via a semantic augmentation strategy acting on the features extracted by the detector backbone, as well as a text-based classification loss.
arXiv Detail & Related papers (2023-01-13T12:01:18Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Multi-Granularity Alignment Domain Adaptation for Object Detection [33.32519045960187]
Domain adaptive object detection is challenging due to distinctive data distribution between source domain and target domain.
We propose a unified multi-granularity alignment based object detection framework towards domain-invariant feature learning.
arXiv Detail & Related papers (2022-03-31T09:05:06Z) - Vector-Decomposed Disentanglement for Domain-Invariant Object Detection [75.64299762397268]
We try to disentangle domain-invariant representations from domain-specific representations.
In the experiment, we evaluate our method on the single- and compound-target case.
arXiv Detail & Related papers (2021-08-15T07:58:59Z) - Domain Adaptive Object Detection via Feature Separation and Alignment [11.4768983507572]
adversarial-based domain adaptive object detection (DAOD) methods have been developed rapidly.
We establish a Feature Separation and Alignment Network (FSANet) which consists of a gray-scale feature separation (GSFS) module, a local-global feature alignment (LGFA) module and a region-instance-level alignment (RILA) module.
Our FSANet achieves better performance on the target domain detection and surpasses the state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T01:44:34Z) - Bi-Dimensional Feature Alignment for Cross-Domain Object Detection [71.85594342357815]
We propose a novel unsupervised cross-domain detection model.
It exploits the annotated data in a source domain to train an object detector for a different target domain.
The proposed model mitigates the cross-domain representation divergence for object detection.
arXiv Detail & Related papers (2020-11-14T03:03:11Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.