Domain Adaptive Object Detection via Feature Separation and Alignment
- URL: http://arxiv.org/abs/2012.08689v1
- Date: Wed, 16 Dec 2020 01:44:34 GMT
- Title: Domain Adaptive Object Detection via Feature Separation and Alignment
- Authors: Chengyang Liang, Zixiang Zhao, Junmin Liu, Jiangshe Zhang
- Abstract summary: adversarial-based domain adaptive object detection (DAOD) methods have been developed rapidly.
We establish a Feature Separation and Alignment Network (FSANet) which consists of a gray-scale feature separation (GSFS) module, a local-global feature alignment (LGFA) module and a region-instance-level alignment (RILA) module.
Our FSANet achieves better performance on the target domain detection and surpasses the state-of-the-art methods.
- Score: 11.4768983507572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, adversarial-based domain adaptive object detection (DAOD) methods
have been developed rapidly. However, there are two issues that need to be
resolved urgently. Firstly, numerous methods reduce the distributional shifts
only by aligning all the feature between the source and target domain, while
ignoring the private information of each domain. Secondly, DAOD should consider
the feature alignment on object existing regions in images. But redundancy of
the region proposals and background noise could reduce the domain
transferability. Therefore, we establish a Feature Separation and Alignment
Network (FSANet) which consists of a gray-scale feature separation (GSFS)
module, a local-global feature alignment (LGFA) module and a
region-instance-level alignment (RILA) module. The GSFS module decomposes the
distractive/shared information which is useless/useful for detection by a
dual-stream framework, to focus on intrinsic feature of objects and resolve the
first issue. Then, LGFA and RILA modules reduce the distributional shifts of
the multi-level features. Notably, scale-space filtering is exploited to
implement adaptive searching for regions to be aligned, and instance-level
features in each region are refined to reduce redundancy and noise mentioned in
the second issue. Various experiments on multiple benchmark datasets prove that
our FSANet achieves better performance on the target domain detection and
surpasses the state-of-the-art methods.
Related papers
- Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Multi-Granularity Alignment Domain Adaptation for Object Detection [33.32519045960187]
Domain adaptive object detection is challenging due to distinctive data distribution between source domain and target domain.
We propose a unified multi-granularity alignment based object detection framework towards domain-invariant feature learning.
arXiv Detail & Related papers (2022-03-31T09:05:06Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
We propose an unsupervised domain adaptation framework to bridge the domain gap between source and target domains.
We use a data augmentation scheme that simulates weather distortions to add domain confusion and prevent overfitting on the source data.
Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap.
arXiv Detail & Related papers (2022-03-07T18:10:40Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.