MAGiC-SLAM: Multi-Agent Gaussian Globally Consistent SLAM
- URL: http://arxiv.org/abs/2411.16785v1
- Date: Mon, 25 Nov 2024 08:34:01 GMT
- Title: MAGiC-SLAM: Multi-Agent Gaussian Globally Consistent SLAM
- Authors: Vladimir Yugay, Theo Gevers, Martin R. Oswald,
- Abstract summary: Simultaneous localization and mapping (SLAM) systems are widely used in computer vision, with applications in augmented reality, robotics, and autonomous driving.
Recent work has addressed this problem using a distributed neural scene representation.
We propose a rigidly deformable 3D Gaussian-based scene representation that dramatically speeds up the system.
We evaluate MAGiC-SLAM on synthetic and real-world datasets and find it more accurate and faster than the state of the art.
- Score: 23.318966306555915
- License:
- Abstract: Simultaneous localization and mapping (SLAM) systems with novel view synthesis capabilities are widely used in computer vision, with applications in augmented reality, robotics, and autonomous driving. However, existing approaches are limited to single-agent operation. Recent work has addressed this problem using a distributed neural scene representation. Unfortunately, existing methods are slow, cannot accurately render real-world data, are restricted to two agents, and have limited tracking accuracy. In contrast, we propose a rigidly deformable 3D Gaussian-based scene representation that dramatically speeds up the system. However, improving tracking accuracy and reconstructing a globally consistent map from multiple agents remains challenging due to trajectory drift and discrepancies across agents' observations. Therefore, we propose new tracking and map-merging mechanisms and integrate loop closure in the Gaussian-based SLAM pipeline. We evaluate MAGiC-SLAM on synthetic and real-world datasets and find it more accurate and faster than the state of the art.
Related papers
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - MM-Gaussian: 3D Gaussian-based Multi-modal Fusion for Localization and Reconstruction in Unbounded Scenes [12.973283255413866]
MM-Gaussian is a LiDAR-camera multi-modal fusion system for localization and mapping in unbounded scenes.
We utilize 3D Gaussian point clouds, with the assistance of pixel-level gradient descent, to fully exploit the color information in photos.
To further bolster the robustness of our system, we designed a relocalization module.
arXiv Detail & Related papers (2024-04-05T11:14:19Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - RGBD GS-ICP SLAM [1.3108652488669732]
We propose a novel dense representation SLAM approach with a fusion of Generalized Iterative Closest Point (G-ICP) and 3D Gaussian Splatting (3DGS)
Experimental results demonstrate the effectiveness of our approach, showing an incredibly fast speed up to 107 FPS.
arXiv Detail & Related papers (2024-03-19T08:49:48Z) - Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting [24.160436463991495]
We present a dense simultaneous localization and mapping (SLAM) method that uses 3D Gaussians as a scene representation.
Our approach enables interactive-time reconstruction and photo-realistic rendering from real-world single-camera RGBD videos.
arXiv Detail & Related papers (2023-12-06T10:47:53Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic
Simultaneous Localization and Mapping [57.173793973480656]
We present the first fully distributed multi-robot system for dense metric-semantic SLAM.
Our system, dubbed Kimera-Multi, is implemented by a team of robots equipped with visual-inertial sensors.
Kimera-Multi builds a 3D mesh model of the environment in real-time, where each face of the mesh is annotated with a semantic label.
arXiv Detail & Related papers (2020-11-08T21:38:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.