GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM
- URL: http://arxiv.org/abs/2502.03228v2
- Date: Tue, 18 Feb 2025 13:00:47 GMT
- Title: GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM
- Authors: Mingrui Li, Weijian Chen, Na Cheng, Jingyuan Xu, Dong Li, Hongyu Wang,
- Abstract summary: We propose GARAD-SLAM, a real-time 3DGS-based SLAM system tailored for dynamic scenes.<n>In terms of tracking, we directly perform dynamic segmentation on Gaussians and map them back to the front-end to obtain dynamic point labels.<n>Our results on real-world datasets demonstrate that our method is competitive in tracking compared to baseline methods.
- Score: 9.060527946525381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 3D Gaussian Splatting (3DGS)-based SLAM system has garnered widespread attention due to its excellent performance in real-time high-fidelity rendering. However, in real-world environments with dynamic objects, existing 3DGS-based SLAM systems often face mapping errors and tracking drift issues. To address these problems, we propose GARAD-SLAM, a real-time 3DGS-based SLAM system tailored for dynamic scenes. In terms of tracking, unlike traditional methods, we directly perform dynamic segmentation on Gaussians and map them back to the front-end to obtain dynamic point labels through a Gaussian pyramid network, achieving precise dynamic removal and robust tracking. For mapping, we impose rendering penalties on dynamically labeled Gaussians, which are updated through the network, to avoid irreversible erroneous removal caused by simple pruning. Our results on real-world datasets demonstrate that our method is competitive in tracking compared to baseline methods, generating fewer artifacts and higher-quality reconstructions in rendering.
Related papers
- GSFF-SLAM: 3D Semantic Gaussian Splatting SLAM via Feature Field [18.520468059548865]
GSFF-SLAM is a novel dense semantic SLAM system based on 3D Gaussian Splatting.
Our method supports semantic reconstruction using various forms of 2D priors, particularly sparse and noisy signals.
When utilizing 2D ground truth priors, GSFF-SLAM achieves state-of-the-art semantic segmentation performance with 95.03% mIoU.
arXiv Detail & Related papers (2025-04-28T01:21:35Z) - Embracing Dynamics: Dynamics-aware 4D Gaussian Splatting SLAM [0.0]
D4DGS-SLAM is the first SLAM based on 4DGS map representation for dynamic environments.
By incorporating the temporal dimension into scene representation, D4DGS-SLAM enables high-quality reconstruction of dynamic scenes.
We show that our method outperforms state-of-the-art approaches in both camera pose tracking and map quality.
arXiv Detail & Related papers (2025-04-07T08:56:35Z) - WildGS-SLAM: Monocular Gaussian Splatting SLAM in Dynamic Environments [48.51530726697405]
We present WildGS-SLAM, a robust and efficient monocular RGB SLAM system designed to handle dynamic environments.
We introduce an uncertainty map, predicted by a shallow multi-layer perceptron and DINOv2 features, to guide dynamic object removal during both tracking and mapping.
Results showcase WildGS-SLAM's superior performance in dynamic environments compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-04-04T19:19:40Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.
We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - Street Gaussians without 3D Object Tracker [86.62329193275916]
Existing methods rely on labor-intensive manual labeling of object poses to reconstruct dynamic objects in canonical space and move them based on these poses during rendering.<n>We propose a stable object tracking module by leveraging associations from 2D deep trackers within a 3D object fusion strategy.<n>We address inevitable tracking errors by further introducing a motion learning strategy in an implicit feature space that autonomously corrects trajectory errors and recovers missed detections.
arXiv Detail & Related papers (2024-12-07T05:49:42Z) - Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
Urban4D is a semantic-guided decomposition strategy inspired by advances in deep 2D semantic map generation.<n>Our approach distinguishes potentially dynamic objects through reliable semantic Gaussians.<n>Experiments on real-world datasets demonstrate that Urban4D achieves comparable or better quality than previous state-of-the-art methods.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems.
We present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting.
We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds.
arXiv Detail & Related papers (2024-08-02T09:07:31Z) - DDN-SLAM: Real-time Dense Dynamic Neural Implicit SLAM [5.267859554944985]
We introduce DDN-SLAM, the first real-time dense dynamic neural implicit SLAM system integrating semantic features.
Compared to existing neural implicit SLAM systems, the tracking results on dynamic datasets indicate an average 90% improvement in Average Trajectory Error (ATE) accuracy.
arXiv Detail & Related papers (2024-01-03T05:42:17Z) - Gaussian Splatting SLAM [16.3858380078553]
We present the first application of 3D Gaussian Splatting in monocular SLAM.
Our method runs live at 3fps, unifying the required representation for accurate tracking, mapping, and high-quality rendering.
Several innovations are required to continuously reconstruct 3D scenes with high fidelity from a live camera.
arXiv Detail & Related papers (2023-12-11T18:19:04Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - Using Detection, Tracking and Prediction in Visual SLAM to Achieve
Real-time Semantic Mapping of Dynamic Scenarios [70.70421502784598]
RDS-SLAM can build semantic maps at object level for dynamic scenarios in real time using only one commonly used Intel Core i7 CPU.
We evaluate RDS-SLAM in TUM RGB-D dataset, and experimental results show that RDS-SLAM can run with 30.3 ms per frame in dynamic scenarios.
arXiv Detail & Related papers (2022-10-10T11:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.