論文の概要: Contrastive Multi-graph Learning with Neighbor Hierarchical Sifting for Semi-supervised Text Classification
- arxiv url: http://arxiv.org/abs/2411.16787v1
- Date: Mon, 25 Nov 2024 08:35:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:09.126070
- Title: Contrastive Multi-graph Learning with Neighbor Hierarchical Sifting for Semi-supervised Text Classification
- Title(参考訳): 半教師付きテキスト分類のための隣接階層化によるコントラスト多重グラフ学習
- Authors: Wei Ai, Jianbin Li, Ze Wang, Yingying Wei, Tao Meng, Yuntao Shou, Keqin Lib,
- Abstract要約: 半教師付きテキスト分類のための隣接階層シフティングを用いたコントラッシブ・マルチグラフ学習法を提案する。
具体的には、コア機能を利用してマルチリレーショナルテキストグラフを作成し、テキスト間のセマンティックな接続を強化する。
ThuCNews、SogouNews、20のニュースグループ、およびOhsumedデータセットに関する我々の実験は95.86%、97.52%、87.43%、70.65%を達成し、半教師付きテキスト分類の競争結果を示している。
- 参考スコア(独自算出の注目度): 16.75801747622402
- License:
- Abstract: Graph contrastive learning has been successfully applied in text classification due to its remarkable ability for self-supervised node representation learning. However, explicit graph augmentations may lead to a loss of semantics in the contrastive views. Secondly, existing methods tend to overlook edge features and the varying significance of node features during multi-graph learning. Moreover, the contrastive loss suffer from false negatives. To address these limitations, we propose a novel method of contrastive multi-graph learning with neighbor hierarchical sifting for semi-supervised text classification, namely ConNHS. Specifically, we exploit core features to form a multi-relational text graph, enhancing semantic connections among texts. By separating text graphs, we provide diverse views for contrastive learning. Our approach ensures optimal preservation of the graph information, minimizing data loss and distortion. Then, we separately execute relation-aware propagation and cross-graph attention propagation, which effectively leverages the varying correlations between nodes and edge features while harmonising the information fusion across graphs. Subsequently, we present the neighbor hierarchical sifting loss (NHS) to refine the negative selection. For one thing, following the homophily assumption, NHS masks first-order neighbors of the anchor and positives from being negatives. For another, NHS excludes the high-order neighbors analogous to the anchor based on their similarities. Consequently, it effectively reduces the occurrence of false negatives, preventing the expansion of the distance between similar samples in the embedding space. Our experiments on ThuCNews, SogouNews, 20 Newsgroups, and Ohsumed datasets achieved 95.86\%, 97.52\%, 87.43\%, and 70.65\%, which demonstrates competitive results in semi-supervised text classification.
- Abstract(参考訳): グラフコントラスト学習は、自己教師付きノード表現学習の際立った能力のため、テキスト分類に成功している。
しかし、明示的なグラフの増大は、対照的な見解における意味論の喪失につながる可能性がある。
第二に、既存の手法は、エッジの特徴とマルチグラフ学習におけるノードの特徴の多様性を見落としがちである。
さらに、対照的な損失は偽陰性に悩まされる。
これらの制約に対処するために,半教師付きテキスト分類,すなわち ConNHS のための隣接階層シフティングを用いたコントラッシブ・マルチグラフ学習手法を提案する。
具体的には、コア機能を利用してマルチリレーショナルテキストグラフを作成し、テキスト間のセマンティックな接続を強化する。
テキストグラフを分離することにより、コントラスト学習のための多様なビューを提供する。
提案手法は,データ損失と歪みを最小限に抑え,グラフ情報の最適保存を実現する。
そこで我々は,グラフ間の情報融合を調和させつつ,ノードとエッジの特徴の相互関係を効果的に活用する関係認識伝搬とクロスグラフアテンション伝搬を別々に実施する。
その後, 近隣の階層的シフティング損失 (NHS) を提示し, 否定的選択を洗練させる。
一つは、ホモフィリーな仮定に従って、NHSはアンカーの1階の隣人をマスクし、陰性であることから正を隠蔽する。
別の例として、NHSは、その類似性に基づいて、アンカーに類似した高次の隣人を除外している。
これにより、偽陰性の発生を効果的に低減し、埋め込み空間における類似サンプル間の距離の拡大を防止できる。
ThuCNews、SogouNews、20のニュースグループ、およびOhsumedデータセットに関する我々の実験は95.86\%、97.52\%、87.43\%、70.65\%に達し、半教師付きテキスト分類における競合結果を示している。
関連論文リスト
- Oversmoothing as Loss of Sign: Towards Structural Balance in Graph Neural Networks [54.62268052283014]
オーバースムーシングはグラフニューラルネットワーク(GNN)において一般的な問題である
反過剰化手法の3つの主要なクラスは、数学的に符号付きグラフ上のメッセージパッシングと解釈できる。
負のエッジはノードをある程度撃退することができ、これらのメソッドが過剰なスムースを緩和する方法に関する深い洞察を提供する。
論文 参考訳(メタデータ) (2025-02-17T03:25:36Z) - Conditional Distribution Learning on Graphs [15.730933577970687]
半教師付きグラフ分類のためのグラフ構造化データからグラフ表現を学習する条件分布学習(CDL)法を提案する。
具体的には、元の特徴に対して弱機能および強拡張機能の条件分布を整列するエンドツーエンドグラフ表現学習モデルを提案する。
論文 参考訳(メタデータ) (2024-11-20T07:26:36Z) - Bootstrap Latents of Nodes and Neighbors for Graph Self-Supervised Learning [27.278097015083343]
対照的な学習は、モデルの崩壊を防ぎ、差別的な表現を学ぶために負のサンプルを必要とする。
我々は、アンカーノードに対する隣人の支持率を予測するために、クロスアテンションモジュールを導入する。
本手法は, 負の正試料と雑音の正試料とのクラス衝突を緩和し, クラス内コンパクト度を同時に向上する。
論文 参考訳(メタデータ) (2024-08-09T14:17:52Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
テキスト分散グラフ(TAG)におけるテキストとノードの分離表現を共同学習するためのContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T17:53:30Z) - Capturing Fine-grained Semantics in Contrastive Graph Representation
Learning [23.861016307326146]
グラフコントラスト学習(Graph contrastive learning)は、類似のインスタンスを閉じて、異種インスタンスをプッシュするコントラストタスクを定義する。
グラフコントラスト学習の既存の方法は、グラフに存在する多様な意味論の違いを無視している。
本稿では, グラフコントラスト学習法(FSGCL)を提案する。
論文 参考訳(メタデータ) (2023-04-23T14:05:05Z) - STERLING: Synergistic Representation Learning on Bipartite Graphs [78.86064828220613]
二部グラフ表現学習の基本的な課題は、ノードの埋め込みを抽出する方法である。
最近の二部グラフSSL法は、正ノード対と負ノード対を識別することによって埋め込みを学習する対照的な学習に基づいている。
負のノードペアを持たないノード埋め込みを学習するための新しい相乗的表現学習モデル(STERling)を提案する。
論文 参考訳(メタデータ) (2023-01-25T03:21:42Z) - Improving Signed Propagation for Graph Neural Networks in Multi-Class Environments [3.4498722449655066]
マルチクラスグラフにおける署名伝達を改善するための2つの新しい戦略を導入する。
提案手法はキャリブレーションとロバスト性の確保を両立させ,不確実性を低減させる。
6つのベンチマークグラフデータセットに対する広範な実験により,本定理の有効性を示す。
論文 参考訳(メタデータ) (2023-01-21T08:47:22Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
短文分類のためのグラフニューラルネットワーク(GNN)に基づく ShiNE と呼ばれる新しい手法を提案する。
まず,短文データセットを単語レベル成分グラフからなる階層的不均一グラフとしてモデル化する。
そして、類似した短いテキスト間の効果的なラベル伝搬を容易にするショート文書グラフを動的に学習する。
論文 参考訳(メタデータ) (2021-10-30T05:33:05Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
逐次グラフ畳み込みネットワーク(GCN)を用いた新しいプールベースアクティブラーニングフレームワークを提案する。
少数のランダムなサンプル画像がシードラベル付き例であるので、グラフのパラメータを学習してラベル付きノードと非ラベル付きノードを区別する。
我々はGCNの特性を利用してラベル付けされたものと十分に異なる未ラベルの例を選択する。
論文 参考訳(メタデータ) (2020-06-18T00:55:10Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
本稿では, 組込み伝搬を非教師なし非パラメトリック正規化器として, 数ショット分類における多様体平滑化に用いることを提案する。
埋め込み伝播がより滑らかな埋め込み多様体を生み出すことを実証的に示す。
複数の半教師付き学習シナリオにおいて,埋め込み伝搬によりモデルの精度が最大16%向上することを示す。
論文 参考訳(メタデータ) (2020-03-09T13:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。