Enabling Adoption of Regenerative Agriculture through Soil Carbon Copilots
- URL: http://arxiv.org/abs/2411.16872v1
- Date: Mon, 25 Nov 2024 19:11:41 GMT
- Title: Enabling Adoption of Regenerative Agriculture through Soil Carbon Copilots
- Authors: Margaret Capetz, Swati Sharma, Rafael Padilha, Peder Olsen, Emre Kiciman, Ranveer Chandra,
- Abstract summary: We introduce an AI-driven Soil Organic Carbon Copilot to provide insights into soil health and regenerative practices.
Our data includes extreme weather event data, farm management data, and SOC predictions.
In comparisons of agricultural practices across California counties, we find evidence that diverse agricultural activity may mitigate the negative effects of tillage.
- Score: 11.63518622433838
- License:
- Abstract: Mitigating climate change requires transforming agriculture to minimize environ mental impact and build climate resilience. Regenerative agricultural practices enhance soil organic carbon (SOC) levels, thus improving soil health and sequestering carbon. A challenge to increasing regenerative agriculture practices is cheaply measuring SOC over time and understanding how SOC is affected by regenerative agricultural practices and other environmental factors and farm management practices. To address this challenge, we introduce an AI-driven Soil Organic Carbon Copilot that automates the ingestion of complex multi-resolution, multi-modal data to provide large-scale insights into soil health and regenerative practices. Our data includes extreme weather event data (e.g., drought and wildfire incidents), farm management data (e.g., cropland information and tillage predictions), and SOC predictions. We find that integrating public data and specialized models enables large-scale, localized analysis for sustainable agriculture. In comparisons of agricultural practices across California counties, we find evidence that diverse agricultural activity may mitigate the negative effects of tillage; and that while extreme weather conditions heavily affect SOC, composting may mitigate SOC loss. Finally, implementing role-specific personas empowers agronomists, farm consultants, policymakers, and other stakeholders to implement evidence-based strategies that promote sustainable agriculture and build climate resilience.
Related papers
- The unrealized potential of agroforestry for an emissions-intensive agricultural commodity [48.652015514785546]
We use machine learning to generate estimates of shade-tree cover and carbon stocks across a West African region.
We find that existing shade-tree cover is low, and not spatially aligned with climate threat.
But we also find enormous unrealized potential for the sector to counterbalance a large proportion of their high carbon footprint annually.
arXiv Detail & Related papers (2024-10-28T10:02:32Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Intelligent Agricultural Greenhouse Control System Based on Internet of
Things and Machine Learning [0.0]
This study endeavors to conceptualize and execute a sophisticated agricultural greenhouse control system grounded in the amalgamation of the Internet of Things (IoT) and machine learning.
The envisaged outcome is an enhancement in crop growth efficiency and yield, accompanied by a reduction in resource wastage.
arXiv Detail & Related papers (2024-02-14T09:07:00Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - AGI for Agriculture [30.785325834651644]
Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education.
This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure.
arXiv Detail & Related papers (2023-04-12T19:39:49Z) - Evaluating Digital Tools for Sustainable Agriculture using Causal
Inference [0.9213852038999553]
We propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators.
This way, we can increase farmers' trust by enhancing the transparency of the digital agriculture market.
arXiv Detail & Related papers (2022-11-06T18:22:17Z) - Personalizing Sustainable Agriculture with Causal Machine Learning [0.0]
To fight climate change and accommodate the increasing population, global crop production has to be strengthened.
To achieve the "sustainable intensification" of agriculture, transforming it from carbon emitter to carbon sink is a priority.
We estimate the heterogeneous effect of sustainable practices on the field-level Soil Organic Carbon content in Lithuania.
arXiv Detail & Related papers (2022-11-06T17:14:14Z) - Towards assessing agricultural land suitability with causal machine
learning [0.0]
We use causal machine learning to estimate the effect of crop rotation and landscape crop diversity on Net Primary Productivity in the Flanders region of Belgium.
We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP.
arXiv Detail & Related papers (2022-04-27T14:13:47Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
Farm parcel delineation provides cadastral data that is important in developing and managing climate change policies.
This data can also be useful for the agricultural insurance sector for assessing compensations following damages associated with extreme weather events.
Using satellite imaging can be a scalable and cost effective manner to perform the task of farm parcel delineation.
arXiv Detail & Related papers (2020-04-11T19:49:09Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.