A Review of Design Concerns in Superconducting Quantum Circuits
- URL: http://arxiv.org/abs/2411.16967v1
- Date: Mon, 25 Nov 2024 22:16:57 GMT
- Title: A Review of Design Concerns in Superconducting Quantum Circuits
- Authors: Eli M. Levenson-Falk, Sadman Ahmed Shanto,
- Abstract summary: We describe the process of designing a superconducting circuit device for quantum information applications.
We discuss the factors that must be considered to implement a desired effective Hamiltonian on a device.
- Score: 0.0
- License:
- Abstract: In this short review we describe the process of designing a superconducting circuit device for quantum information applications. We discuss the factors that must be considered to implement a desired effective Hamiltonian on a device. We describe the translation between a device's physical layout, the circuit graph, and the effective Hamiltonian. We go over the process of electromagnetic simulation of a device layout to predict its behavior. We also discuss concerns such as connectivity, crosstalk suppression, and radiation shielding, and how they affect both on-chip design and enclosure structures. This paper provides an overview of the challenges in superconducting quantum circuit design and acts as a starter document for researchers working on any of these challenges.
Related papers
- Measurement of Many-Body Quantum Correlations in Superconducting Circuits [2.209921757303168]
We propose a probe circuit capable of reading out many-body correlations in an analog quantum simulator.
We demonstrate the capabilities of this design in the context of an LC-ladder with a quantum impurity.
arXiv Detail & Related papers (2024-06-17T17:36:36Z) - Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - Multi-mode architectures for noise-resilient superconducting qubits [0.0]
superconducting qubits have been largely investigated in this direction.
Main focus is on multi-mode superconducting circuits, the paradigmatic example being the so-called $0-pi$ circuit.
arXiv Detail & Related papers (2022-08-04T08:17:08Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - A new concept for design of photonic integrated circuits with the
ultimate density and low loss [62.997667081978825]
We propose a new concept for design of PICs with the ultimate downscaling capability, the absence of geometric loss and a high-fidelity throughput.
This is achieved by a periodic continuous-time quantum walk of photons through waveguide arrays.
We demonstrate the potential of the new concept by reconsidering the design of basic building blocks of the information and sensing systems.
arXiv Detail & Related papers (2021-08-02T14:23:18Z) - Engineering dissipation with resistive elements in circuit quantum
electrodynamics [0.0]
This article discusses how to simulate thermal baths by inserting resistive elements in networks of superconducting qubits.
The aim of the manuscript is to be both an instructive tutorial about how to derive and characterize the Hamiltonian of general dissipative superconducting circuits with capacitive coupling.
arXiv Detail & Related papers (2021-03-31T09:59:45Z) - The superconducting circuit companion -- an introduction with worked
examples [0.0]
The tutorial is intended for new researchers with limited or no experience with the field but should be accessible to anyone with a bachelor's degree in physics.
The tutorial introduces the basic methods used in quantum circuit analysis, starting from a circuit diagram and ending with a quantized Hamiltonian.
arXiv Detail & Related papers (2021-03-01T19:00:00Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.