SEMU-Net: A Segmentation-based Corrector for Fabrication Process Variations of Nanophotonics with Microscopic Images
- URL: http://arxiv.org/abs/2411.16973v1
- Date: Mon, 25 Nov 2024 22:49:59 GMT
- Title: SEMU-Net: A Segmentation-based Corrector for Fabrication Process Variations of Nanophotonics with Microscopic Images
- Authors: Rambod Azimi, Yijian Kong, Dusan Gostimirovic, James J. Clark, Odile Liboiron-Ladouceur,
- Abstract summary: We introduce SEMU-Net, a set of methods that automatically segments scanning electron microscope images (SEM) and uses them to train two deep neural network models based on U-Net and its variants.
The predictor model anticipates fabrication-induced variations, while the corrector model adjusts the design to address these issues.
Experimental results show that the segmentation U-Net reaches an average IoU score of 99.30%, while the corrector attention U-Net in a tandem architecture achieves an average IoU score of 98.67%.
- Score: 4.875868958100446
- License:
- Abstract: Integrated silicon photonic devices, which manipulate light to transmit and process information on a silicon-on-insulator chip, are highly sensitive to structural variations. Minor deviations during nanofabrication-the precise process of building structures at the nanometer scale-such as over- or under-etching, corner rounding, and unintended defects, can significantly impact performance. To address these challenges, we introduce SEMU-Net, a comprehensive set of methods that automatically segments scanning electron microscope images (SEM) and uses them to train two deep neural network models based on U-Net and its variants. The predictor model anticipates fabrication-induced variations, while the corrector model adjusts the design to address these issues, ensuring that the final fabricated structures closely align with the intended specifications. Experimental results show that the segmentation U-Net reaches an average IoU score of 99.30%, while the corrector attention U-Net in a tandem architecture achieves an average IoU score of 98.67%.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Exploring structure diversity in atomic resolution microscopy with graph neural networks [18.903519247639355]
Deep learning is a powerful tool to explore structure diversity in a fast, accurate, and intelligent manner.
This work provides a powerful tool to explore structure diversity in a fast, accurate, and intelligent manner.
arXiv Detail & Related papers (2024-10-23T07:48:35Z) - Automated Segmentation and Analysis of Microscopy Images of Laser Powder Bed Fusion Melt Tracks [0.0]
We present an image segmentation neural network that automatically identifies and measures melt track dimensions from a cross-section image.
We use a U-Net architecture to train on a data set of 62 pre-labelled images obtained from different labs, machines, and materials coupled with image augmentation.
arXiv Detail & Related papers (2024-09-26T22:44:00Z) - Isomorphic Pruning for Vision Models [56.286064975443026]
Structured pruning reduces the computational overhead of deep neural networks by removing redundant sub-structures.
We present Isomorphic Pruning, a simple approach that demonstrates effectiveness across a range of network architectures.
arXiv Detail & Related papers (2024-07-05T16:14:53Z) - DeepForge: Leveraging AI for Microstructural Control in Metal Forming
via Model Predictive Control [0.0]
This study presents a novel method for microstructure control in closed die hot forging.
It combines Model PredictiveCMP with a machine called DeepForge.
arXiv Detail & Related papers (2024-02-25T15:37:14Z) - Enhancing Rock Image Segmentation in Digital Rock Physics: A Fusion of
Generative AI and State-of-the-Art Neural Networks [5.089732183029123]
In digital rock physics, analysing microstructures from CT and SEM scans is crucial for estimating properties like porosity and pore connectivity.
Traditional segmentation methods like thresholding and CNNs often fall short in accurately detailing rock microstructures and are prone to noise.
U-Net improved segmentation accuracy but required many expert-annotated samples, a laborious and error-prone process due to complex pore shapes.
Our study employed an advanced generative AI model, the diffusion model, to overcome these limitations.
TransU-Net sets a new standard in digital rock physics, paving the way for future geoscience and engineering breakthroughs.
arXiv Detail & Related papers (2023-11-10T14:24:50Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
We propose a transformer network with multi-stage CNN feature injection for surface defect segmentation.
CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder.
In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects.
arXiv Detail & Related papers (2023-09-22T06:12:02Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Interpretable Joint Event-Particle Reconstruction for Neutrino Physics
at NOvA with Sparse CNNs and Transformers [124.29621071934693]
We present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention.
TransformerCVN simultaneously classifies each event and reconstructs every individual particle's identity.
This architecture enables us to perform several interpretability studies which provide insights into the network's predictions.
arXiv Detail & Related papers (2023-03-10T20:36:23Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Improving the Segmentation of Scanning Probe Microscope Images using
Convolutional Neural Networks [0.9236074230806579]
We develop protocols for the segmentation of images of 2D assemblies of gold nanoparticles formed on silicon surfaces via deposition from an organic solvent.
The evaporation of the solvent drives far-from-equilibrium self-organisation of the particles, producing a wide variety of nano- and micro-structured patterns.
We show that a segmentation strategy using the U-Net convolutional neural network outperforms traditional automated approaches.
arXiv Detail & Related papers (2020-08-27T20:49:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.