論文の概要: RED: Robust Environmental Design
- arxiv url: http://arxiv.org/abs/2411.17026v1
- Date: Tue, 26 Nov 2024 01:38:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:35:20.166689
- Title: RED: Robust Environmental Design
- Title(参考訳): RED:ロバストな環境デザイン
- Authors: Jinghan Yan,
- Abstract要約: 本研究では,広範囲なパッチベースの攻撃に対して堅牢な道路標識を自動設計するアタッカーに依存しない学習手法を提案する。
デジタル環境と物理環境の両方で実施された実証実験により、我々のアプローチは攻撃に対する脆弱性を著しく減らし、既存の技術より優れていることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The classification of road signs by autonomous systems, especially those reliant on visual inputs, is highly susceptible to adversarial attacks. Traditional approaches to mitigating such vulnerabilities have focused on enhancing the robustness of classification models. In contrast, this paper adopts a fundamentally different strategy aimed at increasing robustness through the redesign of road signs themselves. We propose an attacker-agnostic learning scheme to automatically design road signs that are robust to a wide array of patch-based attacks. Empirical tests conducted in both digital and physical environments demonstrate that our approach significantly reduces vulnerability to patch attacks, outperforming existing techniques.
- Abstract(参考訳): 自律システムによる道路標識の分類、特に視覚入力に依存するものは、敵の攻撃に非常に影響を受けやすい。
このような脆弱性を緩和する従来のアプローチは、分類モデルの堅牢性を高めることに重点を置いている。
これとは対照的に,道路標識自体の再設計によるロバスト性向上を目的とした,根本的に異なる戦略を採用する。
本研究では,広範囲なパッチベースの攻撃に対して堅牢な道路標識を自動設計するアタッカーに依存しない学習手法を提案する。
デジタル環境と物理環境の両方で実施された実証実験により、我々のアプローチは攻撃に対する脆弱性を著しく減らし、既存の技術より優れていることが示された。
関連論文リスト
- FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
我々は攻撃手法を解析し、堅牢な防御手法を提案する。
我々は,物体形状,テクスチャ,位置を利用する逆パッチ攻撃を用いて,モデル信頼度を20%以上下げることに成功した。
敵攻撃にも拘わらず,本手法はモデルレジリエンスを著しく向上させ,高精度かつ信頼性の高いローカライゼーションを実現している。
論文 参考訳(メタデータ) (2024-03-04T13:32:48Z) - Adversarial Robustness Through Artifact Design [2.705610268122756]
敵の強靭性を改善するための新しい手法を提案する。
具体的には、標準を再定義し、既存の標準に小さな変更を加え、敵の例から防御する方法を提供する。
交通信号認識の分野における我々のアプローチを評価し,交通信号ピクトグラムとその色を変更する。
論文 参考訳(メタデータ) (2024-02-07T08:49:33Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
このようなシステムの基礎を形成するディープニューラルネットワークは、敵対攻撃と呼ばれる特定のタイプの攻撃に非常に影響を受けやすい。
ハッカーは、最小限の計算でも、敵対的な例(他のクラスに属するイメージやデータポイント)を生成し、そのようなアルゴリズムの基礎を崩壊させることができます。
本稿では,DropoutとDenoising Autoencodersの2つの効果的な手法を示し,そのような攻撃がモデルを騙すのを防ぐことに成功したことを示す。
論文 参考訳(メタデータ) (2020-12-10T09:34:41Z) - Targeted Physical-World Attention Attack on Deep Learning Models in Road
Sign Recognition [79.50450766097686]
本稿では,現実の道路標識攻撃に対するTAA手法を提案する。
実験の結果,TAA法は攻撃成功率(約10%)を向上し,RP2法と比較して摂動損失(約4分の1)を減少させることがわかった。
論文 参考訳(メタデータ) (2020-10-09T02:31:34Z) - Adversarial Attacks against Face Recognition: A Comprehensive Study [3.766020696203255]
顔認識(FR)システムは優れた検証性能を示した。
近年の研究では、(深い)FRシステムは、知覚できない、または知覚できないが自然に見える対向的な入力画像に興味深い脆弱性を示すことが示されている。
論文 参考訳(メタデータ) (2020-07-22T22:46:00Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Adversarial Feature Desensitization [12.401175943131268]
本稿では,ドメイン適応分野からの洞察を基盤とした,対向ロバスト性に対する新しいアプローチを提案する。
提案手法は,入力の逆方向の摂動に対して不変な特徴を学習することを目的として,AFD(Adversarial Feature Desensitization)と呼ばれる。
論文 参考訳(メタデータ) (2020-06-08T14:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。