g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks
- URL: http://arxiv.org/abs/2411.17030v1
- Date: Tue, 26 Nov 2024 01:54:52 GMT
- Title: g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks
- Authors: Zihan Wang, Gim Hee Lee,
- Abstract summary: Generalizable 3D-Language Feature Fields (g3D-LF) is a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks.
- Score: 62.74304008688472
- License:
- Abstract: We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned representations. Our representation can be generalized to unseen environments, enabling real-time construction and dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives, aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.
Related papers
- Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
Vision-language navigation (VLN) requires an agent to navigate through a 3D environment based on visual observations and natural language instructions.
We introduce a Volumetric Environment Representation (VER), which voxelizes the physical world into structured 3D cells.
VER predicts 3D occupancy, 3D room layout, and 3D bounding boxes jointly.
arXiv Detail & Related papers (2024-03-21T06:14:46Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore.
We propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations.
arXiv Detail & Related papers (2023-06-04T11:08:53Z) - Generating Visual Spatial Description via Holistic 3D Scene
Understanding [88.99773815159345]
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images.
With an external 3D scene extractor, we obtain the 3D objects and scene features for input images.
We construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes.
arXiv Detail & Related papers (2023-05-19T15:53:56Z) - WildRefer: 3D Object Localization in Large-scale Dynamic Scenes with Multi-modal Visual Data and Natural Language [31.691159120136064]
We introduce the task of 3D visual grounding in large-scale dynamic scenes based on natural linguistic descriptions and online captured multi-modal visual data.
We present a novel method, dubbed WildRefer, for this task by fully utilizing the rich appearance information in images, the position and geometric clues in point cloud.
Our datasets are significant for the research of 3D visual grounding in the wild and has huge potential to boost the development of autonomous driving and service robots.
arXiv Detail & Related papers (2023-04-12T06:48:26Z) - Self-supervised 3D Semantic Representation Learning for
Vision-and-Language Navigation [30.429893959096752]
We develop a novel training framework to encode the voxel-level 3D semantic reconstruction into a 3D semantic representation.
We construct an LSTM-based navigation model and train it with the proposed 3D semantic representations and BERT language features on vision-language pairs.
Experiments show that the proposed approach achieves success rates of 68% and 66% on the validation unseen and test unseen splits of the R2R dataset.
arXiv Detail & Related papers (2022-01-26T07:43:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.