GaussianVLM: Scene-centric 3D Vision-Language Models using Language-aligned Gaussian Splats for Embodied Reasoning and Beyond
- URL: http://arxiv.org/abs/2507.00886v1
- Date: Tue, 01 Jul 2025 15:52:59 GMT
- Title: GaussianVLM: Scene-centric 3D Vision-Language Models using Language-aligned Gaussian Splats for Embodied Reasoning and Beyond
- Authors: Anna-Maria Halacheva, Jan-Nico Zaech, Xi Wang, Danda Pani Paudel, Luc Van Gool,
- Abstract summary: multimodal language models are driving the development of 3D Vision-Language Models (VLMs)<n>We propose a scene-centric 3D VLM for 3D Gaussian splat scenes that employs language- and task-aware scene representations.<n>We present the first Gaussian splatting-based VLM, leveraging photorealistic 3D representations derived from standard RGB images.
- Score: 56.677984098204696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As multimodal language models advance, their application to 3D scene understanding is a fast-growing frontier, driving the development of 3D Vision-Language Models (VLMs). Current methods show strong dependence on object detectors, introducing processing bottlenecks and limitations in taxonomic flexibility. To address these limitations, we propose a scene-centric 3D VLM for 3D Gaussian splat scenes that employs language- and task-aware scene representations. Our approach directly embeds rich linguistic features into the 3D scene representation by associating language with each Gaussian primitive, achieving early modality alignment. To process the resulting dense representations, we introduce a dual sparsifier that distills them into compact, task-relevant tokens via task-guided and location-guided pathways, producing sparse, task-aware global and local scene tokens. Notably, we present the first Gaussian splatting-based VLM, leveraging photorealistic 3D representations derived from standard RGB images, demonstrating strong generalization: it improves performance of prior 3D VLM five folds, in out-of-the-domain settings.
Related papers
- Tackling View-Dependent Semantics in 3D Language Gaussian Splatting [80.88015191411714]
LaGa establishes cross-view semantic connections by decomposing the 3D scene into objects.<n>It constructs view-aggregated semantic representations by clustering semantic descriptors and reweighting them based on multi-view semantics.<n>Under the same settings, LaGa achieves a significant improvement of +18.7% mIoU over the previous SOTA on the LERF-OVS dataset.
arXiv Detail & Related papers (2025-05-30T16:06:32Z) - UniGS: Unified Language-Image-3D Pretraining with Gaussian Splatting [68.37013525040891]
We propose UniGS, integrating 3D Gaussian Splatting (3DGS) into multi-modal pre-training to enhance the 3D representation.<n>We demonstrate the effectiveness of UniGS in learning a more general and stronger aligned multi-modal representation.
arXiv Detail & Related papers (2025-02-25T05:10:22Z) - Dr. Splat: Directly Referring 3D Gaussian Splatting via Direct Language Embedding Registration [41.046653227409564]
Dr. Splat is a novel approach for open-vocabulary 3D scene understanding leveraging 3D Gaussian Splatting.<n>Our method associates language-aligned CLIP embeddings with 3D Gaussians for holistic 3D scene understanding.<n> Experiments demonstrate that our approach significantly outperforms existing approaches in 3D perception benchmarks.
arXiv Detail & Related papers (2025-02-23T17:01:14Z) - OVGaussian: Generalizable 3D Gaussian Segmentation with Open Vocabularies [112.80292725951921]
textbfOVGaussian is a generalizable textbfOpen-textbfVocabulary 3D semantic segmentation framework based on the 3D textbfGaussian representation.<n>We first construct a large-scale 3D scene dataset based on 3DGS, dubbed textbfSegGaussian, which provides detailed semantic and instance annotations for both Gaussian points and multi-view images.<n>To promote semantic generalization across scenes, we introduce Generalizable Semantic Rasterization (GSR), which leverages a
arXiv Detail & Related papers (2024-12-31T07:55:35Z) - Occam's LGS: An Efficient Approach for Language Gaussian Splatting [57.00354758206751]
We show that the complicated pipelines for language 3D Gaussian Splatting are simply unnecessary.<n>We apply Occam's razor to the task at hand, leading to a highly efficient weighted multi-view feature aggregation technique.
arXiv Detail & Related papers (2024-12-02T18:50:37Z) - g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks [62.74304008688472]
Generalizable 3D-Language Feature Fields (g3D-LF) is a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks.
arXiv Detail & Related papers (2024-11-26T01:54:52Z) - Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding [11.118857208538039]
We present Foundation Model Embedded Gaussian Splatting (S), which incorporates vision-language embeddings of foundation models into 3D Gaussian Splatting (GS)
Results demonstrate remarkable multi-view semantic consistency, facilitating diverse downstream tasks, beating state-of-the-art methods by 10.2 percent on open-vocabulary language-based object detection.
This research explores the intersection of vision, language, and 3D scene representation, paving the way for enhanced scene understanding in uncontrolled real-world environments.
arXiv Detail & Related papers (2024-01-03T20:39:02Z) - Language Embedded 3D Gaussians for Open-Vocabulary Scene Understanding [2.517953665531978]
We introduce Language Embedded 3D Gaussians, a novel scene representation for open-vocabulary query tasks.
Our representation achieves the best visual quality and language querying accuracy across current language-embedded representations.
arXiv Detail & Related papers (2023-11-30T11:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.