論文の概要: Achieving Privacy Utility Balance for Multivariate Time Series Data
- arxiv url: http://arxiv.org/abs/2411.17035v1
- Date: Tue, 26 Nov 2024 01:59:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:38.920488
- Title: Achieving Privacy Utility Balance for Multivariate Time Series Data
- Title(参考訳): 多変量時系列データのためのプライバシユーティリティバランスの実現
- Authors: Gaurab Hore, Tucker McElroy, Anindya Roy,
- Abstract要約: データユーティリティとプライバシ保護の最適なバランスを実現するために最適化アルゴリズムを用いた多変量全パスフィルタリング手法を提案する。
提案手法の有効性を検証するため,米国国勢調査局のQWIデータセットから得られたシミュレーションデータと実データの両方にMAPフィルタリングを適用した。
- 参考スコア(独自算出の注目度): 2.867517731896504
- License:
- Abstract: Utility-preserving data privatization is of utmost importance for data-producing agencies. The popular noise-addition privacy mechanism distorts autocorrelation patterns in time series data, thereby marring utility; in response, McElroy et al. (2023) introduced all-pass filtering (FLIP) as a utility-preserving time series data privatization method. Adapting this concept to multivariate data is more complex, and in this paper we propose a multivariate all-pass (MAP) filtering method, employing an optimization algorithm to achieve the best balance between data utility and privacy protection. To test the effectiveness of our approach, we apply MAP filtering to both simulated and real data, sourced from the U.S. Census Bureau's Quarterly Workforce Indicator (QWI) dataset.
- Abstract(参考訳): ユーティリティ保護データ民営化は、データ生産機関にとって最も重要である。
一般的なノイズ付加プライバシー機構は時系列データの自己相関パターンを歪曲し、その結果、McElroyら(2023年)はユーティリティ保存時系列データ民営化法として全パスフィルタリング(FLIP)を導入した。
この概念を多変量データに適用することはより複雑であり、本論文では、データユーティリティとプライバシ保護の最適バランスを達成するために最適化アルゴリズムを用いて、多変量全パス(MAP)フィルタリング手法を提案する。
提案手法の有効性を検証するため,米国国勢調査局のQWIデータセットから得られたシミュレーションデータと実データの両方にMAPフィルタリングを適用した。
関連論文リスト
- DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing [0.8739101659113155]
有効なデータパブリッシングアルゴリズムであるemphDP-CDAを導入する。
提案アルゴリズムは、クラス固有の方法でデータをランダムに混合し、プライバシー保証を確保するために慎重に調整されたランダム性を誘導することにより、合成データセットを生成する。
以上の結果から,DP-CDAを用いた合成データセットは,同一のプライバシー要件下であっても,従来のデータパブリッシングアルゴリズムで生成したデータセットよりも優れた実用性が得られることが示唆された。
論文 参考訳(メタデータ) (2024-11-25T06:14:06Z) - Differentially Private Synthetic High-dimensional Tabular Stream [7.726042106665366]
本稿では,複数の合成データセットを時間とともに生成するデータストリーミングのためのアルゴリズムフレームワークを提案する。
我々のアルゴリズムは入力ストリーム全体の差分プライバシーを満たす。
実世界のデータセットを用いた実験により,本手法の有用性を示す。
論文 参考訳(メタデータ) (2024-08-31T01:31:59Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
非プライベートなデータ依存前処理アルゴリズムによって生じる追加のプライバシーコストを評価するための一般的なフレームワークを提案する。
当社のフレームワークは,2つの新しい技術的概念を活用することにより,全体的なプライバシー保証の上限を確立する。
論文 参考訳(メタデータ) (2024-03-19T17:54:49Z) - Privacy-Optimized Randomized Response for Sharing Multi-Attribute Data [1.1510009152620668]
マルチ属性データの共有において最強のプライバシを保証するために,プライバシ最適化ランダム化応答を提案する。
また、近似属性機構を構築するための効率的なアルゴリズムを提案する。
提案手法は,既存の手法に比べて,データセット全体のプライバシー保証を大幅に強化する。
論文 参考訳(メタデータ) (2024-02-12T11:34:42Z) - An Algorithm for Streaming Differentially Private Data [7.726042106665366]
我々は、特に空間データセットに対して計算された、微分プライベートな合成ストリーミングデータ生成のためのアルゴリズムを導出する。
本アルゴリズムの有効性は実世界とシミュレーションデータセットの両方で検証される。
論文 参考訳(メタデータ) (2024-01-26T00:32:31Z) - Differentially Private Heavy Hitter Detection using Federated Analytics [33.69819799254375]
本研究では,プレフィックスツリーに基づくアルゴリズムの性能向上のための実用性について検討する。
我々のモデルは、各ユーザが複数のデータポイントを持っていると仮定し、その目標は、すべてのユーザのデータを集約的および局所的な差分プライバシーで可能な限り多くの最も頻繁なデータポイントを学習することである。
論文 参考訳(メタデータ) (2023-07-21T17:59:15Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - SEAM: Searching Transferable Mixed-Precision Quantization Policy through
Large Margin Regularization [50.04951511146338]
混合精度量子化(MPQ)は各層に対して最適なビット幅割り当てを求めるのに時間を要する。
本稿では,小規模なプロキシデータセットを用いて効率的なMPQポリシーを効率的に検索する手法を提案する。
論文 参考訳(メタデータ) (2023-02-14T05:47:45Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Post-processing of Differentially Private Data: A Fairness Perspective [53.29035917495491]
本稿では,ポストプロセッシングが個人やグループに異なる影響を与えることを示す。
差分的にプライベートなデータセットのリリースと、ダウンストリームの決定にそのようなプライベートなデータセットを使用するという、2つの重要な設定を分析している。
それは、異なる公正度尺度の下で(ほぼ)最適である新しい後処理機構を提案する。
論文 参考訳(メタデータ) (2022-01-24T02:45:03Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。