Fast, accurate, and error-resilient noise spectroscopy via basis optimization
- URL: http://arxiv.org/abs/2411.17064v1
- Date: Tue, 26 Nov 2024 03:04:05 GMT
- Title: Fast, accurate, and error-resilient noise spectroscopy via basis optimization
- Authors: Nanako Shitara, Andrés Montoya-Castillo,
- Abstract summary: We propose an alternative approach that processes the commonly performed dynamical decoupling-based coherence measurements.
We employ our method to reconstruct the noise spectrum of a nitrogen-vacancy sensor in diamond.
Our method's noise spectrum reconstructions uncover previously unsuspected structure and offer unprecedented accuracy.
- Score: 0.0
- License:
- Abstract: Detecting and characterizing decoherence-inducing noise sources is critical for developing scalable quantum technologies and deploying quantum sensors that operate at molecular scales. Yet, existing methods for such noise spectroscopy face fundamental difficulties, including their reliance on severe approximations and the need for extensively averaged measurements. Here, we propose an alternative approach that processes the commonly performed dynamical decoupling-based coherence measurements using a novel self-consistent optimization framework to extract the noise power spectrum that characterizes the interaction between a qubit or quantum sensor and its environment. Our approach adopts minimal assumptions and is robust to the presence of measurement errors. We introduce a protocol to quantify confidence intervals and a physically motivated heuristic to determine which new dynamical decoupling measurement can improve spectral reconstruction. We employ our method to reconstruct the noise spectrum of a nitrogen-vacancy sensor in diamond, resolving previously undetected nuclear species at the diamond surface and revealing that the previous measurements of low-frequency noise had overestimated its strength by an order of magnitude. Our method's noise spectrum reconstructions uncover previously unsuspected structure and offer unprecedented accuracy, setting the stage for precision noise spectroscopy-based quantum metrology.
Related papers
- Practical techniques for high precision measurements on near-term quantum hardware: a Case Study in Molecular Energy Estimation [0.0]
We show how to minimize shot overhead, circuit overhead, measurement noise, and time-dependent measurement noise.
These strategies pave the way for more reliable and accurate quantum computations.
arXiv Detail & Related papers (2024-09-04T09:52:14Z) - Readout error mitigated quantum state tomography tested on superconducting qubits [0.0]
We test the ability of readout error mitigation to correct realistic noise found in systems composed of quantum two-level objects (qubits)
By treating readout error mitigation in the context of state tomography the method becomes largely readout mode-, architecture-, noise source-, and quantum state-independent.
We identify noise sources for which readout error mitigation worked well, and observed decreases in readout by a factor of up to 30.
arXiv Detail & Related papers (2023-12-07T10:54:17Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Self-consistent noise characterization of quantum devices [0.0]
We develop an approach to reduce the quantum environment causing single-qubit dephasing to a simple yet predictive noise model.
We demonstrate the power and limits of our approach by characterizing, with nanoscale spatial resolution, the noise experienced by two electronic spins in diamond.
arXiv Detail & Related papers (2022-10-17T19:10:56Z) - Fourier Transform Noise Spectroscopy [5.508069835694671]
We introduce a noise spectroscopy method that utilizes only the Fourier transform of free induction decay or spin echo measurements.
Our method is applicable to a wide range of quantum platforms and provides a simpler path toward a more accurate spectral characterization of quantum devices.
arXiv Detail & Related papers (2022-10-01T22:20:10Z) - Quantum-enhanced absorption spectroscopy with bright squeezed frequency
combs [91.3755431537592]
We propose a strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state.
A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies.
We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor.
arXiv Detail & Related papers (2022-09-30T17:57:05Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.