Self-consistent noise characterization of quantum devices
- URL: http://arxiv.org/abs/2210.09370v1
- Date: Mon, 17 Oct 2022 19:10:56 GMT
- Title: Self-consistent noise characterization of quantum devices
- Authors: Won Kyu Calvin Sun and Paola Cappellaro
- Abstract summary: We develop an approach to reduce the quantum environment causing single-qubit dephasing to a simple yet predictive noise model.
We demonstrate the power and limits of our approach by characterizing, with nanoscale spatial resolution, the noise experienced by two electronic spins in diamond.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Characterizing and understanding the environment affecting quantum systems is
critical to elucidate its physical properties and engineer better quantum
devices. We develop an approach to reduce the quantum environment causing
single-qubit dephasing to a simple yet predictive noise model. Our approach,
inspired by quantum noise spectroscopy, is to define a "self-consistent"
classical noise spectrum, that is, compatible with all observed decoherence
under various qubit dynamics. We demonstrate the power and limits of our
approach by characterizing, with nanoscale spatial resolution, the noise
experienced by two electronic spins in diamond that, despite their proximity,
surprisingly reveal the presence of a complex quantum spin environment, both
classically-reducible and not. Our results overcome the limitations of existing
noise spectroscopy methods, and highlight the importance of finding predictive
models to accurately characterize the underlying environment. Extending our
work to multiqubit systems would enable spatially-resolved quantum sensing of
complex environments and quantum device characterization, notably to identify
correlated noise between qubits, which is crucial for practical realization of
quantum error correction.
Related papers
- Dynamical simulations of many-body quantum chaos on a quantum computer [3.731709137507907]
We study a class of maximally chaotic circuits known as dual unitary circuits.
We show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators.
We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point.
arXiv Detail & Related papers (2024-11-01T17:57:13Z) - Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
We present a study of quantum linear response theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers.
This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm.
We highlight the significant impact of Pauli saving in reducing measurement costs and noise.
arXiv Detail & Related papers (2024-08-17T23:46:17Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Beyond Quantum Noise Spectroscopy: modelling and mitigating noise with
quantum feature engineering [0.0]
The ability to use quantum technology to achieve useful tasks, be they scientific or industry related, boils down to precise quantum control.
In general it is difficult to assess a proposed solution due to the difficulties in characterising the quantum system or device.
Here we present a general purpose characterisation and control solution making use of a novel deep learning framework composed of quantum features.
arXiv Detail & Related papers (2020-03-15T13:24:45Z) - Spectral characterization of non-Gaussian quantum noise: Keldysh
approach and application to photon shot noise [17.927258551700596]
We show how the Keldysh approach to quantum noise characterization can be usefully employed to characterize frequency-dependent noise.
We show that the quantum bispectrum can be a powerful tool for revealing distinctive non-classical noise properties.
arXiv Detail & Related papers (2020-03-09T05:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.