Creative Agents: Simulating the Systems Model of Creativity with Generative Agents
- URL: http://arxiv.org/abs/2411.17065v1
- Date: Tue, 26 Nov 2024 03:06:04 GMT
- Title: Creative Agents: Simulating the Systems Model of Creativity with Generative Agents
- Authors: Naomi Imasato, Kazuki Miyazawa, Takayuki Nagai, Takato Horii,
- Abstract summary: We implement and simulated the systems model of creativity using virtual agents.
Results suggest that the generative agents may perform better in the framework of the systems model of creativity.
- Score: 0.0
- License:
- Abstract: With the growing popularity of generative AI for images, video, and music, we witnessed models rapidly improve in quality and performance. However, not much attention is paid towards enabling AI's ability to "be creative". In this study, we implemented and simulated the systems model of creativity (proposed by Csikszentmihalyi) using virtual agents utilizing large language models (LLMs) and text prompts. For comparison, the simulations were conducted with the "virtual artists" being: 1)isolated and 2)placed in a multi-agent system. Both scenarios were compared by analyzing the variations and overall "creativity" in the generated artifacts (measured via a user study and LLM). Our results suggest that the generative agents may perform better in the framework of the systems model of creativity.
Related papers
- OpenWebVoyager: Building Multimodal Web Agents via Iterative Real-World Exploration, Feedback and Optimization [66.22117723598872]
We introduce an open-source framework designed to facilitate the development of multimodal web agent.
We first train the base model with imitation learning to gain the basic abilities.
We then let the agent explore the open web and collect feedback on its trajectories.
arXiv Detail & Related papers (2024-10-25T15:01:27Z) - Unbounded: A Generative Infinite Game of Character Life Simulation [68.37260000219479]
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models.
We leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models.
arXiv Detail & Related papers (2024-10-24T17:59:31Z) - xLAM: A Family of Large Action Models to Empower AI Agent Systems [111.5719694445345]
We release xLAM, a series of large action models designed for AI agent tasks.
xLAM consistently delivers exceptional performance across multiple agent ability benchmarks.
arXiv Detail & Related papers (2024-09-05T03:22:22Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Large Language Models Empowered Agent-based Modeling and Simulation: A
Survey and Perspectives [35.04018349811483]
Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities.
We first introduce the background of agent-based modeling and simulation and large language model-empowered agents.
Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios.
arXiv Detail & Related papers (2023-12-19T09:06:45Z) - Creative Agents: Empowering Agents with Imagination for Creative Tasks [31.920963353890393]
We propose a class of solutions for creative agents, where the controller is enhanced with an imaginator that generates detailed imaginations of task outcomes conditioned on language instructions.
We benchmark creative tasks with the challenging open-world game Minecraft, where the agents are asked to create diverse buildings given free-form language instructions.
We perform a detailed experimental analysis of creative agents, showing that creative agents are the first AI agents accomplishing diverse building creation in the survival mode of Minecraft.
arXiv Detail & Related papers (2023-12-05T06:00:52Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - Exploring Perspectives on the Impact of Artificial Intelligence on the
Creativity of Knowledge Work: Beyond Mechanised Plagiarism and Stochastic
Parrots [11.104666702713793]
I show how creativity and originality resist definition as a notatable or information-theoretic property of an object.
I suggest that AI shifts knowledge work from material production to critical integration.
arXiv Detail & Related papers (2023-07-20T10:26:57Z) - Multiscale Generative Models: Improving Performance of a Generative
Model Using Feedback from Other Dependent Generative Models [10.053377705165786]
We take a first step towards building interacting generative models (GANs) that reflects the interaction in real world.
We build and analyze a hierarchical set-up where a higher-level GAN is conditioned on the output of multiple lower-level GANs.
We present a technique of using feedback from the higher-level GAN to improve performance of lower-level GANs.
arXiv Detail & Related papers (2022-01-24T13:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.