PCGRLLM: Large Language Model-Driven Reward Design for Procedural Content Generation Reinforcement Learning
- URL: http://arxiv.org/abs/2502.10906v1
- Date: Sat, 15 Feb 2025 21:00:40 GMT
- Title: PCGRLLM: Large Language Model-Driven Reward Design for Procedural Content Generation Reinforcement Learning
- Authors: In-Chang Baek, Sung-Hyun Kim, Sam Earle, Zehua Jiang, Noh Jin-Ha, Julian Togelius, Kyung-Joong Kim,
- Abstract summary: This work introduces PCGRLLM, an extended architecture based on earlier work, which employs a feedback mechanism and several reasoning-based prompt engineering techniques.
We evaluate the proposed method on a story-to-reward generation task in a two-dimensional environment using two state-of-the-art LLMs.
- Score: 4.173530949970536
- License:
- Abstract: Reward design plays a pivotal role in the training of game AIs, requiring substantial domain-specific knowledge and human effort. In recent years, several studies have explored reward generation for training game agents and controlling robots using large language models (LLMs). In the content generation literature, there has been early work on generating reward functions for reinforcement learning agent generators. This work introduces PCGRLLM, an extended architecture based on earlier work, which employs a feedback mechanism and several reasoning-based prompt engineering techniques. We evaluate the proposed method on a story-to-reward generation task in a two-dimensional environment using two state-of-the-art LLMs, demonstrating the generalizability of our approach. Our experiments provide insightful evaluations that demonstrate the capabilities of LLMs essential for content generation tasks. The results highlight significant performance improvements of 415% and 40% respectively, depending on the zero-shot capabilities of the language model. Our work demonstrates the potential to reduce human dependency in game AI development, while supporting and enhancing creative processes.
Related papers
- MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing large language models on AI research tasks.
This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents.
We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro.
arXiv Detail & Related papers (2025-02-20T12:28:23Z) - ModelGrow: Continual Text-to-Video Pre-training with Model Expansion and Language Understanding Enhancement [49.513401043490305]
This work explores the continual general pre-training of text-to-video models.
We break this task into two key aspects: increasing model capacity and improving semantic understanding.
For semantic understanding, we propose a method that leverages large language models as advanced text encoders.
arXiv Detail & Related papers (2024-12-25T18:58:07Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.
On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - ChatPCG: Large Language Model-Driven Reward Design for Procedural Content Generation [3.333383360927007]
This paper proposes ChatPCG, a large language model (LLM)-driven reward design framework.
It leverages human-level insights, coupled with game expertise, to generate rewards tailored to specific game features automatically.
ChatPCG is integrated with deep reinforcement learning, demonstrating its potential for multiplayer game content generation tasks.
arXiv Detail & Related papers (2024-06-07T08:18:42Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
Large language models (LLMs) have demonstrated remarkable capabilities across various NLP tasks.
Previous research has attempted to distill the knowledge of LLMs into smaller models by generating annotated data.
We propose EvoKD: Evolving Knowledge Distillation, which leverages the concept of active learning to interactively enhance the process of data generation using large language models.
arXiv Detail & Related papers (2024-03-11T03:55:24Z) - Generative Software Engineering [23.584814591463406]
We present a literature review of generative tasks in Software engineering using pre-trained models and large language models (LLMs)
LLMs possess powerful language representation and contextual awareness capabilities, enabling them to leverage diverse training data and adapt to generative tasks.
We identify key strengths, weaknesses, and gaps in existing approaches, and propose potential research directions.
arXiv Detail & Related papers (2024-03-05T01:37:37Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - Towards A Unified Agent with Foundation Models [18.558328028366816]
We investigate how to embed and leverage such abilities in Reinforcement Learning (RL) agents.
We design a framework that uses language as the core reasoning tool, exploring how this enables an agent to tackle a series of fundamental RL challenges.
We demonstrate substantial performance improvements over baselines in exploration efficiency and ability to reuse data from offline datasets.
arXiv Detail & Related papers (2023-07-18T22:37:30Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.