Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation
- URL: http://arxiv.org/abs/2411.17141v1
- Date: Tue, 26 Nov 2024 06:15:27 GMT
- Title: Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation
- Authors: Xu Zheng, Haiwei Xue, Jialei Chen, Yibo Yan, Lutao Jiang, Yuanhuiyi Lyu, Kailun Yang, Linfeng Zhang, Xuming Hu,
- Abstract summary: Key challenge is unimodal bias, where multimodal segmentors over rely on certain modalities, causing performance drops when others are missing.
We develop the first framework for learning robust segmentor that can handle any combinations of visual modalities.
- Score: 30.33381342502258
- License:
- Abstract: Simultaneously using multimodal inputs from multiple sensors to train segmentors is intuitively advantageous but practically challenging. A key challenge is unimodal bias, where multimodal segmentors over rely on certain modalities, causing performance drops when others are missing, common in real world applications. To this end, we develop the first framework for learning robust segmentor that can handle any combinations of visual modalities. Specifically, we first introduce a parallel multimodal learning strategy for learning a strong teacher. The cross-modal and unimodal distillation is then achieved in the multi scale representation space by transferring the feature level knowledge from multimodal to anymodal segmentors, aiming at addressing the unimodal bias and avoiding over-reliance on specific modalities. Moreover, a prediction level modality agnostic semantic distillation is proposed to achieve semantic knowledge transferring for segmentation. Extensive experiments on both synthetic and real-world multi-sensor benchmarks demonstrate that our method achieves superior performance.
Related papers
- Turbo your multi-modal classification with contrastive learning [17.983460380784337]
In this paper, we propose a novel contrastive learning strategy, called $Turbo$, to promote multi-modal understanding.
Specifically, multi-modal data pairs are sent through the forward pass twice with different hidden dropout masks to get two different representations for each modality.
With these representations, we obtain multiple in-modal and cross-modal contrastive objectives for training.
arXiv Detail & Related papers (2024-09-14T03:15:34Z) - DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
We introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout.
DeepInteraction++ is a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder.
Experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks.
arXiv Detail & Related papers (2024-08-09T14:04:21Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - VideoAdviser: Video Knowledge Distillation for Multimodal Transfer
Learning [6.379202839994046]
Multimodal transfer learning aims to transform pretrained representations of diverse modalities into a common domain space for effective multimodal fusion.
We propose VideoAdviser, a video knowledge distillation method to transfer multimodal knowledge of video-enhanced prompts from a multimodal fundamental model to a specific modal fundamental model.
We evaluate our method in two challenging multimodal tasks: video-level sentiment analysis and audio-visual retrieval.
arXiv Detail & Related papers (2023-09-27T08:44:04Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Multimodal Contrastive Learning via Uni-Modal Coding and Cross-Modal
Prediction for Multimodal Sentiment Analysis [19.07020276666615]
We propose a novel framework named MultiModal Contrastive Learning (MMCL) for multimodal representation to capture intra- and inter-modality dynamics simultaneously.
We also design two contrastive learning tasks, instance- and sentiment-based contrastive learning, to promote the process of prediction and learn more interactive information related to sentiment.
arXiv Detail & Related papers (2022-10-26T08:24:15Z) - What Makes Multimodal Learning Better than Single (Provably) [28.793128982222438]
We show that learning with multiple modalities achieves a smaller population risk thanonly using its subset of modalities.
This is the first theoretical treatment to capture important qualitative phenomenaobserved in real multimodal applications.
arXiv Detail & Related papers (2021-06-08T17:20:02Z) - Multimodal Knowledge Expansion [14.332957885505547]
We propose a knowledge distillation-based framework to utilize multimodal data without requiring labels.
We show that a multimodal student model consistently denoises pseudo labels and generalizes better than its teacher.
arXiv Detail & Related papers (2021-03-26T12:32:07Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.