An In-depth Investigation of Sparse Rate Reduction in Transformer-like Models
- URL: http://arxiv.org/abs/2411.17182v1
- Date: Tue, 26 Nov 2024 07:44:57 GMT
- Title: An In-depth Investigation of Sparse Rate Reduction in Transformer-like Models
- Authors: Yunzhe Hu, Difan Zou, Dong Xu,
- Abstract summary: We propose an information-theoretic objective function called Sparse Rate Reduction (SRR)
We show that SRR has a positive correlation coefficient and outperforms other baseline measures, such as path-norm and sharpness-based ones.
We show that generalization can be improved using SRR as regularization on benchmark image classification datasets.
- Score: 32.04194224236952
- License:
- Abstract: Deep neural networks have long been criticized for being black-box. To unveil the inner workings of modern neural architectures, a recent work \cite{yu2024white} proposed an information-theoretic objective function called Sparse Rate Reduction (SRR) and interpreted its unrolled optimization as a Transformer-like model called Coding Rate Reduction Transformer (CRATE). However, the focus of the study was primarily on the basic implementation, and whether this objective is optimized in practice and its causal relationship to generalization remain elusive. Going beyond this study, we derive different implementations by analyzing layer-wise behaviors of CRATE, both theoretically and empirically. To reveal the predictive power of SRR on generalization, we collect a set of model variants induced by varied implementations and hyperparameters and evaluate SRR as a complexity measure based on its correlation with generalization. Surprisingly, we find out that SRR has a positive correlation coefficient and outperforms other baseline measures, such as path-norm and sharpness-based ones. Furthermore, we show that generalization can be improved using SRR as regularization on benchmark image classification datasets. We hope this paper can shed light on leveraging SRR to design principled models and study their generalization ability.
Related papers
- The Price of Implicit Bias in Adversarially Robust Generalization [25.944485657150146]
We study the implicit bias of optimization in robust empirical risk minimization (robust ERM)
We show that the implicit bias of optimization in robust ERM can significantly affect the robustness of the model.
arXiv Detail & Related papers (2024-06-07T14:44:37Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - What and How does In-Context Learning Learn? Bayesian Model Averaging,
Parameterization, and Generalization [111.55277952086155]
We study In-Context Learning (ICL) by addressing several open questions.
We show that, without updating the neural network parameters, ICL implicitly implements the Bayesian model averaging algorithm.
We prove that the error of pretrained model is bounded by a sum of an approximation error and a generalization error.
arXiv Detail & Related papers (2023-05-30T21:23:47Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
We propose a new regularizer, namely, Equivariance Regularizer (ER)
ER can enhance the generalization ability of the model by employing the semantic equivariance between the head and tail entities.
The experimental results indicate a clear and substantial improvement over the state-of-the-art relation prediction methods.
arXiv Detail & Related papers (2022-06-24T08:18:05Z) - The Eigenlearning Framework: A Conservation Law Perspective on Kernel
Regression and Wide Neural Networks [1.6519302768772166]
We derive simple closed-form estimates for the test risk and other generalization metrics of kernel ridge regression.
We identify a sharp conservation law which limits the ability of KRR to learn any orthonormal basis of functions.
arXiv Detail & Related papers (2021-10-08T06:32:07Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z) - Extrapolatable Relational Reasoning With Comparators in Low-Dimensional
Manifolds [7.769102711230249]
We propose a neuroscience-inspired inductive-biased module that can be readily amalgamated with current neural network architectures.
We show that neural nets with this inductive bias achieve considerably better o.o.d generalisation performance for a range of relational reasoning tasks.
arXiv Detail & Related papers (2020-06-15T19:09:13Z) - Multivariate Functional Regression via Nested Reduced-Rank
Regularization [2.730097437607271]
We propose a nested reduced-rank regression (NRRR) approach in fitting regression model with multivariate functional responses and predictors.
We show through non-asymptotic analysis that NRRR can achieve at least a comparable error rate to that of the reduced-rank regression.
We apply NRRR in an electricity demand problem, to relate the trajectories of the daily electricity consumption with those of the daily temperatures.
arXiv Detail & Related papers (2020-03-10T14:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.