From Graph Diffusion to Graph Classification
- URL: http://arxiv.org/abs/2411.17236v1
- Date: Tue, 26 Nov 2024 08:57:41 GMT
- Title: From Graph Diffusion to Graph Classification
- Authors: Jia Jun Cheng Xian, Sadegh Mahdavi, Renjie Liao, Oliver Schulte,
- Abstract summary: We show how graph diffusion models can be applied for graph classification.
In experiments with a sampling-based inference method, our discriminative training objective achieves state-of-the-art graph classification accuracy.
- Score: 21.2763549550792
- License:
- Abstract: Generative models such as diffusion models have achieved remarkable success in state-of-the-art image and text tasks. Recently, score-based diffusion models have extended their success beyond image generation, showing competitive performance with discriminative methods in image {\em classification} tasks~\cite{zimmermann2021score}. However, their application to classification in the {\em graph} domain, which presents unique challenges such as complex topologies, remains underexplored. We show how graph diffusion models can be applied for graph classification. We find that to achieve competitive classification accuracy, score-based graph diffusion models should be trained with a novel training objective that is tailored to graph classification. In experiments with a sampling-based inference method, our discriminative training objective achieves state-of-the-art graph classification accuracy.
Related papers
- Mitigating Label Noise on Graph via Topological Sample Selection [72.86862597508077]
We propose a $textitTopological Sample Selection$ (TSS) method that boosts the informative sample selection process in a graph by utilising topological information.
We theoretically prove that our procedure minimizes an upper bound of the expected risk under target clean distribution, and experimentally show the superiority of our method compared with state-of-the-art baselines.
arXiv Detail & Related papers (2024-03-04T11:24:51Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Globally Interpretable Graph Learning via Distribution Matching [12.885580925389352]
We aim to answer an important question that is not yet well studied: how to provide a global interpretation for the graph learning procedure?
We formulate this problem as globally interpretable graph learning, which targets on distilling high-level and human-intelligible patterns that dominate the learning procedure.
We propose a novel model fidelity metric, tailored for evaluating the fidelity of the resulting model trained on interpretations.
arXiv Detail & Related papers (2023-06-18T00:50:36Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Issues with Propagation Based Models for Graph-Level Outlier Detection [16.980621769406916]
Graph-Level Outlier Detection ( GLOD) is the task of identifying unusual graphs within a graph database.
This paper identifies and delves into a fundamental and intriguing issue with applying propagation based models to GLOD.
We find that ROC-AUC performance of the models change significantly depending on which class is down-sampled.
arXiv Detail & Related papers (2020-12-23T19:38:21Z) - Certified Robustness of Graph Classification against Topology Attack
with Randomized Smoothing [22.16111584447466]
Graph-based machine learning models are vulnerable to adversarial perturbations due to the non i.i.d nature of graph data.
We build a smoothed graph classification model with certified robustness guarantee.
We also evaluate the effectiveness of our approach under graph convolutional network (GCN) based multi-class graph classification model.
arXiv Detail & Related papers (2020-09-12T22:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.