BadScan: An Architectural Backdoor Attack on Visual State Space Models
- URL: http://arxiv.org/abs/2411.17283v1
- Date: Tue, 26 Nov 2024 10:13:09 GMT
- Title: BadScan: An Architectural Backdoor Attack on Visual State Space Models
- Authors: Om Suhas Deshmukh, Sankalp Nagaonkar, Achyut Mani Tripathi, Ashish Mishra,
- Abstract summary: Recently introduced Visual State Space Model (VMamba) has shown exceptional performance compared to Vision Transformers (ViT)
One common approach is to embed a trigger in the training data to retrain the model, causing it to misclassify data samples into a target class.
We introduce a novel architectural backdoor attack, termed BadScan, designed to deceive the VMamba model.
- Score: 2.2499166814992435
- License:
- Abstract: The newly introduced Visual State Space Model (VMamba), which employs \textit{State Space Mechanisms} (SSM) to interpret images as sequences of patches, has shown exceptional performance compared to Vision Transformers (ViT) across various computer vision tasks. However, recent studies have highlighted that deep models are susceptible to adversarial attacks. One common approach is to embed a trigger in the training data to retrain the model, causing it to misclassify data samples into a target class, a phenomenon known as a backdoor attack. In this paper, we first evaluate the robustness of the VMamba model against existing backdoor attacks. Based on this evaluation, we introduce a novel architectural backdoor attack, termed BadScan, designed to deceive the VMamba model. This attack utilizes bit plane slicing to create visually imperceptible backdoored images. During testing, if a trigger is detected by performing XOR operations between the $k^{th}$ bit planes of the modified triggered patches, the traditional 2D selective scan (SS2D) mechanism in the visual state space (VSS) block of VMamba is replaced with our newly designed BadScan block, which incorporates four newly developed scanning patterns. We demonstrate that the BadScan backdoor attack represents a significant threat to visual state space models and remains effective even after complete retraining from scratch. Experimental results on two widely used image classification datasets, CIFAR-10, and ImageNet-1K, reveal that while visual state space models generally exhibit robustness against current backdoor attacks, the BadScan attack is particularly effective, achieving a higher Triggered Accuracy Ratio (TAR) in misleading the VMamba model and its variants.
Related papers
- Exploring Robustness of Visual State Space model against Backdoor Attacks [10.650319885027054]
We conduct experiments to comprehend on robustness of Visual State Space Model (VSS) through the lens of backdoor attacks.
We first investigate the vulnerability of VSS to different backdoor triggers and reveal that the SSM mechanism makes the VSS model more susceptible to backdoor triggers.
We consider an effective backdoor for the VSS model that recurs in each patch to resist patch perturbations.
arXiv Detail & Related papers (2024-08-21T14:58:29Z) - An Invisible Backdoor Attack Based On Semantic Feature [0.0]
Backdoor attacks have severely threatened deep neural network (DNN) models in the past several years.
We propose a novel backdoor attack, making imperceptible changes.
We evaluate our attack on three prominent image classification datasets.
arXiv Detail & Related papers (2024-05-19T13:50:40Z) - Backdoor Attack with Mode Mixture Latent Modification [26.720292228686446]
We propose a backdoor attack paradigm that only requires minimal alterations to a clean model in order to inject the backdoor under the guise of fine-tuning.
We evaluate the effectiveness of our method on four popular benchmark datasets.
arXiv Detail & Related papers (2024-03-12T09:59:34Z) - Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
We propose to use model pairs on open-set classification tasks for detecting backdoors.
We show that this score, can be an indicator for the presence of a backdoor despite models being of different architectures.
This technique allows for the detection of backdoors on models designed for open-set classification tasks, which is little studied in the literature.
arXiv Detail & Related papers (2024-02-28T21:29:16Z) - Mask and Restore: Blind Backdoor Defense at Test Time with Masked
Autoencoder [57.739693628523]
We propose a framework for blind backdoor defense with Masked AutoEncoder (BDMAE)
BDMAE detects possible triggers in the token space using image structural similarity and label consistency between the test image and MAE restorations.
Our approach is blind to the model restorations, trigger patterns and image benignity.
arXiv Detail & Related papers (2023-03-27T19:23:33Z) - SATBA: An Invisible Backdoor Attack Based On Spatial Attention [7.405457329942725]
Backdoor attacks involve the training of Deep Neural Network (DNN) on datasets that contain hidden trigger patterns.
Most existing backdoor attacks suffer from two significant drawbacks: their trigger patterns are visible and easy to detect by backdoor defense or even human inspection.
We propose a novel backdoor attack named SATBA that overcomes these limitations using spatial attention and an U-net based model.
arXiv Detail & Related papers (2023-02-25T10:57:41Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Backdoor Attacks on Crowd Counting [63.90533357815404]
Crowd counting is a regression task that estimates the number of people in a scene image.
In this paper, we investigate the vulnerability of deep learning based crowd counting models to backdoor attacks.
arXiv Detail & Related papers (2022-07-12T16:17:01Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.