PIM-AI: A Novel Architecture for High-Efficiency LLM Inference
- URL: http://arxiv.org/abs/2411.17309v1
- Date: Tue, 26 Nov 2024 10:54:19 GMT
- Title: PIM-AI: A Novel Architecture for High-Efficiency LLM Inference
- Authors: Cristobal Ortega, Yann Falevoz, Renaud Ayrignac,
- Abstract summary: This paper introduces PIM-AI, a novel DDR5/LPDDR5 PIM architecture designed for Large Language Models inference.
In cloud-based scenarios, PIM-AI reduces the 3-year TCO per queries-per-second by up to 6.94x.
In mobile scenarios, PIM-AI achieves a 10- to 20-fold reduction in energy per token compared to state-of-the-art mobile SOCs.
- Score: 0.4746684680917117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have become essential in a variety of applications due to their advanced language understanding and generation capabilities. However, their computational and memory requirements pose significant challenges to traditional hardware architectures. Processing-in-Memory (PIM), which integrates computational units directly into memory chips, offers several advantages for LLM inference, including reduced data transfer bottlenecks and improved power efficiency. This paper introduces PIM-AI, a novel DDR5/LPDDR5 PIM architecture designed for LLM inference without modifying the memory controller or DDR/LPDDR memory PHY. We have developed a simulator to evaluate the performance of PIM-AI in various scenarios and demonstrate its significant advantages over conventional architectures. In cloud-based scenarios, PIM-AI reduces the 3-year TCO per queries-per-second by up to 6.94x compared to state-of-the-art GPUs, depending on the LLM model used. In mobile scenarios, PIM-AI achieves a 10- to 20-fold reduction in energy per token compared to state-of-the-art mobile SoCs, resulting in 25 to 45~\% more queries per second and 6.9x to 13.4x less energy per query, extending battery life and enabling more inferences per charge. These results highlight PIM-AI's potential to revolutionize LLM deployments, making them more efficient, scalable, and sustainable.
Related papers
- HH-PIM: Dynamic Optimization of Power and Performance with Heterogeneous-Hybrid PIM for Edge AI Devices [1.8749305679160366]
This study introduces a Heterogeneous-Hybrid PIM (HH-PIM) architecture, comprising high-performance MRAM-SRAM PIM modules and low-power MRAM-SRAM PIM modules.
We show that the proposed HH-PIM achieves up to $60.43$ percent average energy savings over conventional PIMs while meeting application requirements.
arXiv Detail & Related papers (2025-04-02T08:22:32Z) - PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing [48.30406812516552]
We introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimize model architecture and edge system constraints.
PLM employs a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint.
evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data.
arXiv Detail & Related papers (2025-03-15T15:11:17Z) - Explore Activation Sparsity in Recurrent LLMs for Energy-Efficient Neuromorphic Computing [3.379854610429579]
Recurrent Large Language Models (R-LLM) have proven effective in mitigating the complexity of self-attention.
We propose a low-cost, training-free algorithm to sparsify R-LLMs' activations to enhance energy efficiency on neuromorphic hardware.
arXiv Detail & Related papers (2025-01-09T19:13:03Z) - LoL-PIM: Long-Context LLM Decoding with Scalable DRAM-PIM System [6.21613161960432]
Large language models (LLMs) process sequences of tens of thousands of tokens.
processing-in-Memory (PIM) maximizes memory bandwidth by moving compute to the data.
LoL-PIM is a multi-node PIM architecture that accelerates long context LLM through hardware-software co-design.
arXiv Detail & Related papers (2024-12-28T14:38:16Z) - eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
Large Language Models (LLMs) herald a transformative era in artificial intelligence (AI)
This paper introduces an effective approach that enhances the operational efficiency and affordability of LLM inference.
arXiv Detail & Related papers (2024-11-24T22:50:02Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL is a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters.
We develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks.
arXiv Detail & Related papers (2024-10-21T17:58:20Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - Performance Law of Large Language Models [58.32539851241063]
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources.
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources without extensive experiments.
arXiv Detail & Related papers (2024-08-19T11:09:12Z) - OPIMA: Optical Processing-In-Memory for Convolutional Neural Network Acceleration [5.0389804644646174]
We introduce OPIMA, a processing-in-memory (PIM)-based machine learning accelerator.
PIM struggles to achieve high throughput and energy efficiency due to internal data movement bottlenecks.
We show that OPIMA can achieve 2.98x higher throughput and 137x better energy efficiency than the best-known prior work.
arXiv Detail & Related papers (2024-07-11T06:12:04Z) - Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
Large language models (LLMs) have transformed natural language processing, enabling machines to generate human-like text and engage in meaningful conversations.
Developments in computing and memory capabilities are lagging behind, exacerbated by the discontinuation of Moore's law.
compute-in-memory (CIM) technologies offer a promising solution for accelerating AI inference by directly performing analog computations in memory.
arXiv Detail & Related papers (2024-06-12T16:57:58Z) - PIM-Opt: Demystifying Distributed Optimization Algorithms on a Real-World Processing-In-Memory System [21.09681871279162]
Modern Machine Learning (ML) training on large-scale datasets is a time-consuming workload.
It relies on the optimization algorithm Gradient Descent (SGD) due to its effectiveness, simplicity, and generalization performance.
processor-centric architectures suffer from low performance and high energy consumption while executing ML training workloads.
Processing-In-Memory (PIM) is a promising solution to alleviate the data movement bottleneck.
arXiv Detail & Related papers (2024-04-10T17:00:04Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.