論文の概要: Correlation-Aware Graph Convolutional Networks for Multi-Label Node Classification
- arxiv url: http://arxiv.org/abs/2411.17350v1
- Date: Tue, 26 Nov 2024 11:52:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:30:45.437077
- Title: Correlation-Aware Graph Convolutional Networks for Multi-Label Node Classification
- Title(参考訳): マルチラベルノード分類のための相関対応グラフ畳み込みネットワーク
- Authors: Yuanchen Bei, Weizhi Chen, Hao Chen, Sheng Zhou, Carl Yang, Jiapei Fan, Longtao Huang, Jiajun Bu,
- Abstract要約: マルチラベルノード分類のための相関対応グラフ畳み込みネットワーク(CorGCN)を提案する。
CorGCNは新しい相関対応グラフ分解モジュールを導入することで、ラベルごとにリッチなラベル関連情報を含むグラフを学習できる。
- 参考スコア(独自算出の注目度): 32.4968073593255
- License:
- Abstract: Multi-label node classification is an important yet under-explored domain in graph mining as many real-world nodes belong to multiple categories rather than just a single one. Although a few efforts have been made by utilizing Graph Convolution Networks (GCNs) to learn node representations and model correlations between multiple labels in the embedding space, they still suffer from the ambiguous feature and ambiguous topology induced by multiple labels, which reduces the credibility of the messages delivered in graphs and overlooks the label correlations on graph data. Therefore, it is crucial to reduce the ambiguity and empower the GCNs for accurate classification. However, this is quite challenging due to the requirement of retaining the distinctiveness of each label while fully harnessing the correlation between labels simultaneously. To address these issues, in this paper, we propose a Correlation-aware Graph Convolutional Network (CorGCN) for multi-label node classification. By introducing a novel Correlation-Aware Graph Decomposition module, CorGCN can learn a graph that contains rich label-correlated information for each label. It then employs a Correlation-Enhanced Graph Convolution to model the relationships between labels during message passing to further bolster the classification process. Extensive experiments on five datasets demonstrate the effectiveness of our proposed CorGCN.
- Abstract(参考訳): マルチラベルノード分類は、グラフマイニングにおいて重要だが未探索の領域であり、多くの実世界のノードは単一のノードではなく複数のカテゴリに属している。
グラフ畳み込みネットワーク(GCN)を用いて、埋め込み空間内の複数のラベル間のノード表現とモデル相関を学習するが、それでも、複数のラベルによって誘導されるあいまいな特徴とあいまいなトポロジーに悩まされ、グラフで配信されるメッセージの信頼性が低下し、グラフデータ上のラベル相関を見落としている。
したがって、曖昧さを減らし、GCNを正確な分類に活用することが重要である。
しかし、ラベル間の相関性を完全に活用しつつ、各ラベルの区別性を維持する必要があるため、これは非常に困難である。
本稿では,マルチラベルノード分類のための相関対応グラフ畳み込みネットワーク(CorGCN)を提案する。
CorGCNは新しい相関対応グラフ分解モジュールを導入することで、ラベルごとにリッチなラベル関連情報を含むグラフを学習できる。
その後、相関強化グラフ畳み込みを使用して、メッセージパッシング中のラベル間の関係をモデル化し、分類プロセスをさらに強化する。
5つのデータセットに対する大規模な実験により、提案したCorGCNの有効性が実証された。
関連論文リスト
- TGNN: A Joint Semi-supervised Framework for Graph-level Classification [34.300070497510276]
我々は、ツイングラフニューラルネットワーク(TGNN)と呼ばれる新しい半教師付きフレームワークを提案する。
グラフ構造情報を補完的なビューから探索するために、TGNNにはメッセージパッシングモジュールとグラフカーネルモジュールがあります。
我々は,TGNNを様々な公開データセットで評価し,高い性能が得られることを示す。
論文 参考訳(メタデータ) (2023-04-23T15:42:11Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
ノードがグラフのインスタンスである階層グラフにおけるノード分類問題について検討する。
本稿では階層グラフ相互情報(HGMI)を提案し,理論的保証をもってHGMIを計算する方法を提案する。
本稿では,この階層グラフモデリングとSEAL-CI法がテキストおよびソーシャルネットワークデータに与える影響を実証する。
論文 参考訳(メタデータ) (2022-06-11T04:05:29Z) - Graph Attention Transformer Network for Multi-Label Image Classification [50.0297353509294]
複雑なラベル間関係を効果的にマイニングできる多ラベル画像分類のための一般的なフレームワークを提案する。
提案手法は3つのデータセット上で最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2022-03-08T12:39:05Z) - Label-Wise Message Passing Graph Neural Network on Heterophilic Graphs [20.470934944907608]
ホモフィリーあるいはヘテロフィリーなグラフでよく機能する新しいフレームワークについて検討する。
ラベルに関するメッセージパッシングでは、類似の擬似ラベルを持つ隣人が集約される。
また、ホモフィリー・ヘテロフィリーなグラフのモデルを自動的に選択するバイレベル最適化法を提案する。
論文 参考訳(メタデータ) (2021-10-15T14:49:45Z) - Graph Decoupling Attention Markov Networks for Semi-supervised Graph
Node Classification [38.52231889960877]
グラフニューラルネットワーク(GNN)は、ノード分類などのグラフ学習タスクにおいてユビキタスである。
本稿では,グラフノードのラベル依存を考察し,ハードとソフトの両方の注意を学ぶための分離注意機構を提案する。
論文 参考訳(メタデータ) (2021-04-28T11:44:13Z) - GNN-XML: Graph Neural Networks for Extreme Multi-label Text
Classification [23.79498916023468]
extreme multi-label text classification (xmtc) は、非常に大きなラベルセットから最も関連するラベルのサブセットでテキストインスタンスをタグ付けすることを目的としている。
GNN-XMLはXMTC問題に適したスケーラブルなグラフニューラルネットワークフレームワークである。
論文 参考訳(メタデータ) (2020-12-10T18:18:34Z) - On the Equivalence of Decoupled Graph Convolution Network and Label
Propagation [60.34028546202372]
いくつかの研究は、カップリングがデカップリングよりも劣っていることを示している。
有効性にもかかわらず、疎結合GCNの作用機構はよく理解されていない。
本稿では,分離GCNの欠陥を克服する適応的学習法(PTA)を提案する。
論文 参考訳(メタデータ) (2020-10-23T13:57:39Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
本稿では,グラフに符号化された相互に絡み合った関係を明示的に解消する新しいグラフ畳み込みネットワーク(GCN)を提案する。
FactorGCNは単純なグラフを入力として取り、それをいくつかの分解グラフに分解する。
提案したFacterGCNは,合成および実世界のデータセットに対して質的かつ定量的に評価する。
論文 参考訳(メタデータ) (2020-10-12T03:01:40Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
グラフ識別(GI)は、グラフ学習において長い間研究されており、特定の応用において不可欠である。
本稿では,逆グラフ識別(Inverse Graph Identification, IGI)と呼ばれる新しい問題を定義する。
本稿では,グラフアテンションネットワーク(GAT)を用いたノードレベルのメッセージパッシング処理を,GIのプロトコルの下でシンプルかつ効果的に行う方法を提案する。
論文 参考訳(メタデータ) (2020-07-12T12:06:17Z) - Multi-Label Graph Convolutional Network Representation Learning [20.059242373860013]
マルチラベルネットワークのためのノード表現学習のための新しいマルチラベルグラフ畳み込みネットワーク(ML-GCN)を提案する。
2つのGCNはそれぞれノードとラベルの表現学習の1つの側面を扱い、1つの目的関数の下でシームレスに統合される。
論文 参考訳(メタデータ) (2019-12-26T02:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。