論文の概要: Label-Wise Message Passing Graph Neural Network on Heterophilic Graphs
- arxiv url: http://arxiv.org/abs/2110.08128v1
- Date: Fri, 15 Oct 2021 14:49:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 14:47:46.807527
- Title: Label-Wise Message Passing Graph Neural Network on Heterophilic Graphs
- Title(参考訳): Heterophilic Graph上でグラフニューラルネットワークを通過するラベルウィズメッセージ
- Authors: Enyan Dai, Zhimeng Guo, Suhang Wang
- Abstract要約: ホモフィリーあるいはヘテロフィリーなグラフでよく機能する新しいフレームワークについて検討する。
ラベルに関するメッセージパッシングでは、類似の擬似ラベルを持つ隣人が集約される。
また、ホモフィリー・ヘテロフィリーなグラフのモデルを自動的に選択するバイレベル最適化法を提案する。
- 参考スコア(独自算出の注目度): 20.470934944907608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved remarkable performance in modeling
graphs for various applications. However, most existing GNNs assume the graphs
exhibit strong homophily in node labels, i.e., nodes with similar labels are
connected in the graphs. They fail to generalize to heterophilic graphs where
linked nodes may have dissimilar labels and attributes. Therefore, in this
paper, we investigate a novel framework that performs well on graphs with
either homophily or heterophily. More specifically, to address the challenge
brought by the heterophily in graphs, we propose a label-wise message passing
mechanism. In label-wise message-passing, neighbors with similar pseudo labels
will be aggregated together, which will avoid the negative effects caused by
aggregating dissimilar node representations. We further propose a bi-level
optimization method to automatically select the model for graphs with
homophily/heterophily. Extensive experiments demonstrate the effectiveness of
our proposed framework for node classification on both homophilic and
heterophilic graphs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,様々なアプリケーションを対象としたグラフモデリングにおいて,優れたパフォーマンスを実現している。
しかし、既存のgnnの多くは、グラフがノードラベルに強い相同性を示すと仮定している。
彼らは、連結ノードが異種ラベルと属性を持つような異種グラフへの一般化に失敗する。
そこで本研究では,ホモフィリーなグラフやヘテロフィリーなグラフをうまく扱う新しいフレームワークについて検討する。
具体的には,グラフにおけるヘテロフィリエによる課題に対処するため,ラベルワイドメッセージパッシング機構を提案する。
ラベルのメッセージパッシングでは、類似した擬似ラベルを持つ隣人が集約され、異種ノード表現の集約による負の影響を避ける。
さらに,ホモフィア/ヘテロフィアリーグラフのモデルを自動的に選択するbiレベル最適化手法を提案する。
実験により,同好性グラフおよび異好性グラフにおけるノード分類のためのフレームワークの有効性が示された。
関連論文リスト
- Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph
Clustering [29.17784041837907]
マルチビューグラフクラスタリング(AHGFC)のための適応ハイブリッドグラフフィルタを提案する。
AHGFCはグラフ結合集約行列に基づいてノード埋め込みを学習する。
実験結果から,同好性グラフと異好性グラフを含む6つのデータセットに対して,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2024-01-05T07:27:29Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
グラフを好適なGNNモデルが見つかる前に、まずホモ親和性あるいはヘテロ親和性として識別することは不可能である。
本稿では,グラフ再構成,混合フィルタ,二重グラフクラスタリングネットワークという3つの重要な要素を含むグラフクラスタリング手法を提案する。
我々の手法は異種グラフ上で他者を支配している。
論文 参考訳(メタデータ) (2023-05-03T01:49:01Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
ノードがグラフのインスタンスである階層グラフにおけるノード分類問題について検討する。
本稿では階層グラフ相互情報(HGMI)を提案し,理論的保証をもってHGMIを計算する方法を提案する。
本稿では,この階層グラフモデリングとSEAL-CI法がテキストおよびソーシャルネットワークデータに与える影響を実証する。
論文 参考訳(メタデータ) (2022-06-11T04:05:29Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
グラフニューラルネットワーク(GNN)は、しばしばグラフ分類において強いホモフィリを仮定し、ヘテロフィリを考えることは滅多にない。
We developed a novel GNN architecture called IHGNN (short for Incorporated Heterophily into Graph Neural Networks)
我々は、様々なグラフデータセット上でIHGNNを実証的に検証し、グラフ分類のための最先端のGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T06:48:35Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
グラフニューラルネットワーク(GNN)は、グラフ上の予測タスクのために広く研究されている。
ほとんどのGNNは、局所的ホモフィリー、すなわち地域住民の強い類似性を仮定している。
基本となるホモフィリーによって制限されることなく、任意のグラフを扱うことができる柔軟なGNNモデルを提案する。
論文 参考訳(メタデータ) (2021-03-26T00:35:36Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
グラフ識別(GI)は、グラフ学習において長い間研究されており、特定の応用において不可欠である。
本稿では,逆グラフ識別(Inverse Graph Identification, IGI)と呼ばれる新しい問題を定義する。
本稿では,グラフアテンションネットワーク(GAT)を用いたノードレベルのメッセージパッシング処理を,GIのプロトコルの下でシンプルかつ効果的に行う方法を提案する。
論文 参考訳(メタデータ) (2020-07-12T12:06:17Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。