Joint Combinatorial Node Selection and Resource Allocations in the Lightning Network using Attention-based Reinforcement Learning
- URL: http://arxiv.org/abs/2411.17353v1
- Date: Tue, 26 Nov 2024 11:56:19 GMT
- Title: Joint Combinatorial Node Selection and Resource Allocations in the Lightning Network using Attention-based Reinforcement Learning
- Authors: Mahdi Salahshour, Amirahmad Shafiee, Mojtaba Tefagh,
- Abstract summary: The Lightning Network (LN) has emerged as a second-layer solution to Bitcoin's scalability challenges.
This paper proposes a Deep Reinforcement Learning framework, enhanced by the power of transformers, to address the Joint Combinatorial Node Selection and Resource Allocation problem.
Our findings suggest not only an absence of conflict between LN's decentralization goals and individuals' revenue-maximization incentives but also a positive association between the two.
- Score: 0.0
- License:
- Abstract: The Lightning Network (LN) has emerged as a second-layer solution to Bitcoin's scalability challenges. The rise of Payment Channel Networks (PCNs) and their specific mechanisms incentivize individuals to join the network for profit-making opportunities. According to the latest statistics, the total value locked within the Lightning Network is approximately \$500 million. Meanwhile, joining the LN with the profit-making incentives presents several obstacles, as it involves solving a complex combinatorial problem that encompasses both discrete and continuous control variables related to node selection and resource allocation, respectively. Current research inadequately captures the critical role of resource allocation and lacks realistic simulations of the LN routing mechanism. In this paper, we propose a Deep Reinforcement Learning (DRL) framework, enhanced by the power of transformers, to address the Joint Combinatorial Node Selection and Resource Allocation (JCNSRA) problem. We have improved upon an existing environment by introducing modules that enhance its routing mechanism, thereby narrowing the gap with the actual LN routing system and ensuring compatibility with the JCNSRA problem. We compare our model against several baselines and heuristics, demonstrating its superior performance across various settings. Additionally, we address concerns regarding centralization in the LN by deploying our agent within the network and monitoring the centrality measures of the evolved graph. Our findings suggest not only an absence of conflict between LN's decentralization goals and individuals' revenue-maximization incentives but also a positive association between the two.
Related papers
- Fairness-Utilization Trade-off in Wireless Networks with Explainable Kolmogorov-Arnold Networks [14.51946231794179]
This paper focuses on the challenge of transmit power allocation in wireless networks, aiming to optimize $alpha$-fairness to balance network utilization and user equity.
We introduce a novel approach utilizing Kolmogorov-Arnold Networks (KANs), a class of machine learning models that offer low inference costs.
Two algorithms are proposed for dataset generation and decentralized KAN training, offering a flexible framework for achieving various fairness objectives.
arXiv Detail & Related papers (2024-11-04T09:40:47Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - A Neuro-Symbolic Approach to Multi-Agent RL for Interpretability and
Probabilistic Decision Making [42.503612515214044]
Multi-agent reinforcement learning (MARL) is well-suited for runtime decision-making in systems where multiple agents coexist and compete for shared resources.
Applying common deep learning-based MARL solutions to real-world problems suffers from issues of interpretability, sample efficiency, partial observability, etc.
We present an event-driven formulation, where decision-making is handled by distributed co-operative MARL agents using neuro-symbolic methods.
arXiv Detail & Related papers (2024-02-21T00:16:08Z) - Relay Mining: Incentivizing Full Non-Validating Nodes Servicing All RPC Types [0.0]
Relay Mining estimates and proves the volume of Remote Procedure Calls (RPCs) made from a client to a server.
We leverage digital signatures, commit-and-reveal schemes, and Sparse Merkle Sum Tries (SMSTs) to prove the amount of work done.
A native cryptocurrency on a distributed ledger is used to rate limit applications and disincentivize over-usage.
arXiv Detail & Related papers (2023-05-18T03:23:41Z) - Deep Reinforcement Learning-based Rebalancing Policies for Profit
Maximization of Relay Nodes in Payment Channel Networks [7.168126766674749]
We study how a relay node can maximize its profits from fees by using the rebalancing method of submarine swaps.
We formulate the problem of the node's fortune over time over all rebalancing policies, and approximate the optimal solution by designing a Deep Reinforcement Learning-based rebalancing policy.
arXiv Detail & Related papers (2022-10-13T19:11:10Z) - Adversarially Robust Learning for Security-Constrained Optimal Power
Flow [55.816266355623085]
We tackle the problem of N-k security-constrained optimal power flow (SCOPF)
N-k SCOPF is a core problem for the operation of electrical grids.
Inspired by methods in adversarially robust training, we frame N-k SCOPF as a minimax optimization problem.
arXiv Detail & Related papers (2021-11-12T22:08:10Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Decentralized Learning for Channel Allocation in IoT Networks over
Unlicensed Bandwidth as a Contextual Multi-player Multi-armed Bandit Game [134.88020946767404]
We study a decentralized channel allocation problem in an ad-hoc Internet of Things network underlaying on the spectrum licensed to a primary cellular network.
Our study maps this problem into a contextual multi-player, multi-armed bandit game, and proposes a purely decentralized, three-stage policy learning algorithm through trial-and-error.
arXiv Detail & Related papers (2020-03-30T10:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.