Fairness-Utilization Trade-off in Wireless Networks with Explainable Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2411.01924v1
- Date: Mon, 04 Nov 2024 09:40:47 GMT
- Title: Fairness-Utilization Trade-off in Wireless Networks with Explainable Kolmogorov-Arnold Networks
- Authors: Masoud Shokrnezhad, Hamidreza Mazandarani, Tarik Taleb,
- Abstract summary: This paper focuses on the challenge of transmit power allocation in wireless networks, aiming to optimize $alpha$-fairness to balance network utilization and user equity.
We introduce a novel approach utilizing Kolmogorov-Arnold Networks (KANs), a class of machine learning models that offer low inference costs.
Two algorithms are proposed for dataset generation and decentralized KAN training, offering a flexible framework for achieving various fairness objectives.
- Score: 14.51946231794179
- License:
- Abstract: The effective distribution of user transmit powers is essential for the significant advancements that the emergence of 6G wireless networks brings. In recent studies, Deep Neural Networks (DNNs) have been employed to address this challenge. However, these methods frequently encounter issues regarding fairness and computational inefficiency when making decisions, rendering them unsuitable for future dynamic services that depend heavily on the participation of each individual user. To address this gap, this paper focuses on the challenge of transmit power allocation in wireless networks, aiming to optimize $\alpha$-fairness to balance network utilization and user equity. We introduce a novel approach utilizing Kolmogorov-Arnold Networks (KANs), a class of machine learning models that offer low inference costs compared to traditional DNNs through superior explainability. The study provides a comprehensive problem formulation, establishing the NP-hardness of the power allocation problem. Then, two algorithms are proposed for dataset generation and decentralized KAN training, offering a flexible framework for achieving various fairness objectives in dynamic 6G environments. Extensive numerical simulations demonstrate the effectiveness of our approach in terms of fairness and inference cost. The results underscore the potential of KANs to overcome the limitations of existing DNN-based methods, particularly in scenarios that demand rapid adaptation and fairness.
Related papers
- Joint Combinatorial Node Selection and Resource Allocations in the Lightning Network using Attention-based Reinforcement Learning [0.0]
The Lightning Network (LN) has emerged as a second-layer solution to Bitcoin's scalability challenges.
This paper proposes a Deep Reinforcement Learning framework, enhanced by the power of transformers, to address the Joint Combinatorial Node Selection and Resource Allocation problem.
Our findings suggest not only an absence of conflict between LN's decentralization goals and individuals' revenue-maximization incentives but also a positive association between the two.
arXiv Detail & Related papers (2024-11-26T11:56:19Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - GNN-Based Joint Channel and Power Allocation in Heterogeneous Wireless Networks [9.031738020845586]
This article proposes a GNN-based algorithm to address the joint resource allocation problem in heterogeneous wireless networks.
Our proposed algorithm achieves satisfactory performance but with higher computational efficiency compared to traditional optimisation algorithms.
arXiv Detail & Related papers (2024-07-28T04:51:00Z) - Graph Neural Networks-Based User Pairing in Wireless Communication
Systems [0.34410212782758043]
We propose an unsupervised graph neural network (GNN) approach to efficiently solve the user pairing problem.
At 20 dB SNR, our proposed approach achieves a 49% better sum rate than k-means and a staggering 95% better sum rate than SUS.
arXiv Detail & Related papers (2023-05-14T11:57:42Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
Due to mutual interference between users, power allocation problems in wireless networks are often non-trivial.
Graph Graph neural networks (GNNs) have recently emerged as a promising approach tackling these problems and an approach exploits underlying topology of wireless networks.
arXiv Detail & Related papers (2023-03-27T10:59:09Z) - Adaptive Target-Condition Neural Network: DNN-Aided Load Balancing for
Hybrid LiFi and WiFi Networks [19.483289519348315]
Machine learning has the potential to provide a complexity-friendly load balancing solution.
The state-of-the-art (SOTA) learning-aided LB methods need retraining when the network environment changes.
A novel deep neural network (DNN) structure named adaptive target-condition neural network (A-TCNN) is proposed.
arXiv Detail & Related papers (2022-08-09T20:46:13Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
We formulate a resilient radio resource management problem with per-user minimum-capacity constraints.
We show that we can parameterize the user selection and power control policies using a finite set of parameters.
Thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate.
arXiv Detail & Related papers (2022-03-07T19:40:39Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.