論文の概要: MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2411.17382v1
- Date: Tue, 26 Nov 2024 12:41:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:10.523697
- Title: MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting
- Title(参考訳): MFF-FTNet:時系列予測のための周波数領域と時間領域をまたいだマルチスケール特徴融合
- Authors: Yangyang Shi, Qianqian Ren, Yong Liu, Jianguo Sun,
- Abstract要約: 時系列予測は多くの分野において重要であるが、現在のディープラーニングモデルはノイズやデータの分散、複雑なパターンのキャプチャに苦労している。
本稿では,コントラスト学習とマルチスケール特徴抽出を組み合わせることで,これらの課題に対処する新しいフレームワークであるMFF-FTNetを提案する。
5つの実世界のデータセットに対する大規模な実験は、MFF-FTNetが最先端のモデルを大幅に上回っていることを示している。
- 参考スコア(独自算出の注目度): 18.815152183468673
- License:
- Abstract: Time series forecasting is crucial in many fields, yet current deep learning models struggle with noise, data sparsity, and capturing complex multi-scale patterns. This paper presents MFF-FTNet, a novel framework addressing these challenges by combining contrastive learning with multi-scale feature extraction across both frequency and time domains. MFF-FTNet introduces an adaptive noise augmentation strategy that adjusts scaling and shifting factors based on the statistical properties of the original time series data, enhancing model resilience to noise. The architecture is built around two complementary modules: a Frequency-Aware Contrastive Module (FACM) that refines spectral representations through frequency selection and contrastive learning, and a Complementary Time Domain Contrastive Module (CTCM) that captures both short- and long-term dependencies using multi-scale convolutions and feature fusion. A unified feature representation strategy enables robust contrastive learning across domains, creating an enriched framework for accurate forecasting. Extensive experiments on five real-world datasets demonstrate that MFF-FTNet significantly outperforms state-of-the-art models, achieving a 7.7% MSE improvement on multivariate tasks. These findings underscore MFF-FTNet's effectiveness in modeling complex temporal patterns and managing noise and sparsity, providing a comprehensive solution for both long- and short-term forecasting.
- Abstract(参考訳): 時系列予測は多くの分野において重要であるが、現在のディープラーニングモデルはノイズやデータの分散、複雑なマルチスケールパターンのキャプチャに苦労している。
本稿では,これらの課題に対処する新しいフレームワークであるMFF-FTNetを提案する。
MFF-FTNetは、元の時系列データの統計的特性に基づいてスケーリングとシフトを調整し、ノイズに対するモデルレジリエンスを向上させる適応ノイズ増強戦略を導入する。
このアーキテクチャは2つの補完モジュールを中心に構築されている:周波数対応コントラストモジュール(FACM)は周波数選択とコントラスト学習を通じてスペクトル表現を洗練し、補完時間ドメインコントラストモジュール(CTCM)は複数スケールの畳み込みと機能融合を用いて短期および長期の依存関係をキャプチャする。
統合された特徴表現戦略は、ドメイン間の堅牢なコントラスト学習を可能にし、正確な予測のためのリッチなフレームワークを作成する。
5つの実世界のデータセットに対する大規模な実験により、MFF-FTNetは最先端のモデルを大幅に上回っており、多変量タスクにおいて7.7%の改善が達成されている。
これらの知見は,MFF-FTNetが複雑な時間パターンをモデル化し,ノイズと空間性を管理する上で有効であることを示すものである。
関連論文リスト
- Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - MMFNet: Multi-Scale Frequency Masking Neural Network for Multivariate Time Series Forecasting [6.733646592789575]
長期時系列予測(LTSF)は、電力消費計画、財務予測、疾病の伝播分析など、多くの実世界の応用において重要である。
MMFNetは,マルチスケールマスク付き周波数分解手法を利用して,長期多変量予測を向上する新しいモデルである。
MMFNetは、時系列を様々なスケールの周波数セグメントに変換し、学習可能なマスクを用いて非関連成分を適応的にフィルタリングすることで、微細で中間的で粗い時間パターンをキャプチャする。
論文 参考訳(メタデータ) (2024-10-02T22:38:20Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting [7.694820760102176]
ATFNetは、時間ドメインモジュールと周波数ドメインモジュールを組み合わせた革新的なフレームワークである。
本稿では,2つのモジュール間の重み調整機構であるドミナント・ハーモニック・シリーズ・エナジー・ウェイトリングを紹介する。
我々の複素数値スペクトル注意機構は、異なる周波数の組み合わせ間の複雑な関係を識別するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-04-08T04:41:39Z) - FCDNet: Frequency-Guided Complementary Dependency Modeling for
Multivariate Time-Series Forecasting [9.083469629116784]
時系列予測のための簡潔で効果的なフレームワークであるFCDNetを提案する。
多レベル周波数パターンから長期的および短期的依存情報を適応的に抽出する。
実験の結果、FCDNetは強いベースラインをはるかに超えることがわかった。
論文 参考訳(メタデータ) (2023-12-27T07:29:52Z) - Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting [67.60443290781988]
時系列予測は、金融、交通、エネルギー、医療など、さまざまな産業領域において重要な役割を果たしてきた。
最多ベースの予測手法は、ポイントワイドマッピングと情報のボトルネックに悩まされる。
本稿では、時系列予測のための周波数領域上に構築された、シンプルで効果的なアーキテクチャであるFreTSを提案する。
論文 参考訳(メタデータ) (2023-11-10T17:05:13Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
この研究はドメイン境界を超越する統一モデルパラダイムを提唱する。
効果的なクロスドメインモデルを学ぶことは、以下の課題を提示します。
効果的なドメイン間時系列学習のためのUniTimeを提案する。
論文 参考訳(メタデータ) (2023-10-15T06:30:22Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。