VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models
- URL: http://arxiv.org/abs/2411.17451v1
- Date: Tue, 26 Nov 2024 14:08:34 GMT
- Title: VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models
- Authors: Lei Li, Yuancheng Wei, Zhihui Xie, Xuqing Yang, Yifan Song, Peiyi Wang, Chenxin An, Tianyu Liu, Sujian Li, Bill Yuchen Lin, Lingpeng Kong, Qi Liu,
- Abstract summary: Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems.
Current assessment methods rely on AI-annotated preference labels from traditional tasks.
We introduce VL-RewardBench, a benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks.
- Score: 66.56298924208319
- License:
- Abstract: Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline combining sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe model limitations. Comprehensive evaluation across 16 leading large vision-language models, demonstrates VL-RewardBench's effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson's r > 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs.
Related papers
- Vision Language Models are In-Context Value Learners [89.29486557646624]
We present Generative Value Learning (GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress.
Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks.
arXiv Detail & Related papers (2024-11-07T09:17:50Z) - MM-Vet v2: A Challenging Benchmark to Evaluate Large Multimodal Models for Integrated Capabilities [146.4724093405187]
We introduce MM-Vet v2, which includes a new "image-text sequence understanding" capability called "image-text sequence understanding"
Using MM-Vet v2 to benchmark large multimodal models, we found that Claude 3.5 Sonnet is the best model with a score of 71.8, slightly outperforming GPT-4o which scored 71.0.
arXiv Detail & Related papers (2024-08-01T17:59:54Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - What Are We Measuring When We Evaluate Large Vision-Language Models? An Analysis of Latent Factors and Biases [87.65903426052155]
We perform a large-scale transfer learning experiment aimed at discovering latent vision-language skills from data.
We show that generation tasks suffer from a length bias, suggesting benchmarks should balance tasks with varying output lengths.
We present a new dataset, OLIVE, which simulates user instructions in the wild and presents challenges dissimilar to all datasets we tested.
arXiv Detail & Related papers (2024-04-03T02:40:35Z) - ALLaVA: Harnessing GPT4V-Synthesized Data for Lite Vision-Language Models [45.040292339670096]
Large vision-language models (LVLMs) have shown premise in a broad range of vision-language tasks with their strong reasoning and generalization capabilities.
This study aims to bridge the performance gap between traditional-scale LVLMs and resource-friendly lite versions by adopting high-quality training data.
arXiv Detail & Related papers (2024-02-18T19:26:49Z) - Improving Commonsense in Vision-Language Models via Knowledge Graph
Riddles [83.41551911845157]
This paper focuses on analyzing and improving the commonsense ability of recent popular vision-language (VL) models.
We propose a more scalable strategy, i.e., "Data Augmentation with kNowledge graph linearization for CommonsensE capability" (DANCE)
For better commonsense evaluation, we propose the first retrieval-based commonsense diagnostic benchmark.
arXiv Detail & Related papers (2022-11-29T18:59:59Z) - VLUE: A Multi-Task Benchmark for Evaluating Vision-Language Models [21.549122658275383]
Recent advances in vision-language pre-training have demonstrated impressive performance in a range of vision-language tasks.
We introduce the Vision-Language Understanding Evaluation benchmark, a multi-task multi-dimension benchmark for evaluating the generalization capabilities and the efficiency-performance trade-off.
arXiv Detail & Related papers (2022-05-30T16:52:30Z) - Reassessing Evaluation Practices in Visual Question Answering: A Case
Study on Out-of-Distribution Generalization [27.437077941786768]
Vision-and-language (V&L) models pretrained on large-scale multimodal data have demonstrated strong performance on various tasks.
We evaluate two pretrained V&L models under different settings by conducting cross-dataset evaluations.
We find that these models tend to learn to solve the benchmark, rather than learning the high-level skills required by the VQA task.
arXiv Detail & Related papers (2022-05-24T16:44:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.