MM-Vet v2: A Challenging Benchmark to Evaluate Large Multimodal Models for Integrated Capabilities
- URL: http://arxiv.org/abs/2408.00765v1
- Date: Thu, 1 Aug 2024 17:59:54 GMT
- Title: MM-Vet v2: A Challenging Benchmark to Evaluate Large Multimodal Models for Integrated Capabilities
- Authors: Weihao Yu, Zhengyuan Yang, Linfeng Ren, Linjie Li, Jianfeng Wang, Kevin Lin, Chung-Ching Lin, Zicheng Liu, Lijuan Wang, Xinchao Wang,
- Abstract summary: We introduce MM-Vet v2, which includes a new "image-text sequence understanding" capability called "image-text sequence understanding"
Using MM-Vet v2 to benchmark large multimodal models, we found that Claude 3.5 Sonnet is the best model with a score of 71.8, slightly outperforming GPT-4o which scored 71.0.
- Score: 146.4724093405187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MM-Vet, with open-ended vision-language questions targeting at evaluating integrated capabilities, has become one of the most popular benchmarks for large multimodal model evaluation. MM-Vet assesses six core vision-language (VL) capabilities: recognition, knowledge, spatial awareness, language generation, OCR, and math. However, its question format is restricted to single image-text pairs, lacking the interleaved image and text sequences prevalent in real-world scenarios. To address this limitation, we introduce MM-Vet v2, which includes a new VL capability called "image-text sequence understanding", evaluating models' ability to process VL sequences. Furthermore, we maintain the high quality of evaluation samples while further expanding the evaluation set size. Using MM-Vet v2 to benchmark large multimodal models, we found that Claude 3.5 Sonnet is the best model with a score of 71.8, slightly outperforming GPT-4o which scored 71.0. Among open-weight models, InternVL2-Llama3-76B leads with a score of 68.4.
Related papers
- VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models [66.56298924208319]
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems.
Current assessment methods rely on AI-annotated preference labels from traditional tasks.
We introduce VL-RewardBench, a benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks.
arXiv Detail & Related papers (2024-11-26T14:08:34Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We build universal embedding models capable of handling a wide range of downstream tasks.
Our contributions are twofold: (1) MMEB (Massive Multimodal Embedding Benchmark), which covers 4 meta-tasks (i.e. classification, visual question answering, multimodal retrieval, and visual grounding) and 36 datasets, including 20 training and 16 evaluation datasets, and (2) VLM2Vec (Vision-Language Model -> Vector), a contrastive training framework that converts any state-of-the-art vision-language model into an embedding model via training on MMEB.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - DARE: Diverse Visual Question Answering with Robustness Evaluation [16.87867803628065]
Vision Language Models (VLMs) extend remarkable capabilities of text-only large language models and vision-only models.
They struggle with a number of crucial vision-language (VL) reasoning abilities such as counting and spatial reasoning.
We introduce DARE, Diverse Visual Question Answering with Robustness Evaluation.
arXiv Detail & Related papers (2024-09-26T16:31:50Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [159.9847317300497]
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks.
Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes.
arXiv Detail & Related papers (2023-08-04T17:59:47Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
We propose MMBench, a benchmark for assessing the multi-modal capabilities of vision-language models.
MMBench is meticulously curated with well-designed quality control schemes.
MMBench incorporates multiple-choice questions in both English and Chinese versions.
arXiv Detail & Related papers (2023-07-12T16:23:09Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
We propose to augment a vision-language pre-training model with a textual pre-trained language model (PLM) via vision-language knowledge distillation (VLKD)
Experiments show that the resulting model has strong zero-shot performance on multimodal generation tasks, such as open-ended visual question answering and image captioning.
The original textual language understanding and generation ability of the PLM is maintained after VLKD, which makes our model versatile for both multimodal and unimodal tasks.
arXiv Detail & Related papers (2022-03-12T09:33:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.