VLRMBench: A Comprehensive and Challenging Benchmark for Vision-Language Reward Models
- URL: http://arxiv.org/abs/2503.07478v1
- Date: Mon, 10 Mar 2025 15:52:57 GMT
- Title: VLRMBench: A Comprehensive and Challenging Benchmark for Vision-Language Reward Models
- Authors: Jiacheng Ruan, Wenzhen Yuan, Xian Gao, Ye Guo, Daoxin Zhang, Zhe Xu, Yao Hu, Ting Liu, Yuzhuo Fu,
- Abstract summary: Vision-language models (VLRMs) have become increasingly pivotal in the reasoning process.<n>Existing benchmarks for vision-language RMs (VLRMs) typically assess only a single aspect of their capabilities.<n>We propose a comprehensive and challenging benchmark, dubbed as VLRMBench, encompassing 12,634 questions.
- Score: 40.87249469370042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although large visual-language models (LVLMs) have demonstrated strong performance in multimodal tasks, errors may occasionally arise due to biases during the reasoning process. Recently, reward models (RMs) have become increasingly pivotal in the reasoning process. Specifically, process RMs evaluate each reasoning step, outcome RMs focus on the assessment of reasoning results, and critique RMs perform error analysis on the entire reasoning process, followed by corrections. However, existing benchmarks for vision-language RMs (VLRMs) typically assess only a single aspect of their capabilities (e.g., distinguishing between two answers), thus limiting the all-round evaluation and restricting the development of RMs in the visual-language domain. To address this gap, we propose a comprehensive and challenging benchmark, dubbed as VLRMBench, encompassing 12,634 questions. VLRMBench is constructed based on three distinct types of datasets, covering mathematical reasoning, hallucination understanding, and multi-image understanding. We design 12 tasks across three major categories, focusing on evaluating VLRMs in the aspects of process understanding, outcome judgment, and critique generation. Extensive experiments are conducted on 21 open-source models and 5 advanced closed-source models, highlighting the challenges posed by VLRMBench. For instance, in the `Forecasting Future', a binary classification task, the advanced GPT-4o achieves only a 76.0% accuracy. Additionally, we perform comprehensive analytical studies, offering valuable insights for the future development of VLRMs. We anticipate that VLRMBench will serve as a pivotal benchmark in advancing VLRMs. Code and datasets will be available at https://github.com/JCruan519/VLRMBench.
Related papers
- VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models [121.03333569013148]
We introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories.
These types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives.
Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans.
arXiv Detail & Related papers (2025-04-21T17:59:53Z) - Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing [90.65399476233495]
We introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE)
RISEBench focuses on four key reasoning types: Temporal, Causal, Spatial, and Logical Reasoning.
We propose an evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and an LMM-as-a-judge approach.
arXiv Detail & Related papers (2025-04-03T17:59:56Z) - R1-Onevision: Advancing Generalized Multimodal Reasoning through Cross-Modal Formalization [26.757458496178437]
We introduce R1-Onevision, a multimodal reasoning model designed to bridge the gap between visual perception and deep reasoning.
We construct the R1-Onevision dataset which provides detailed, step-by-step multimodal reasoning annotations across diverse domains.
We further develop the R1-Onevision model through supervised fine-tuning and reinforcement learning to cultivate advanced reasoning.
Experimental results show that R1-Onevision achieves state-of-the-art performance, outperforming models such as GPT-4o and Qwen2.5-VL.
arXiv Detail & Related papers (2025-03-13T17:56:05Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models [28.74956741932006]
We introduce PRMBench, a process-level benchmark to assess the fine-grained error detection capabilities of PRMs.<n>PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions.
arXiv Detail & Related papers (2025-01-06T16:31:45Z) - VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models [66.56298924208319]
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems.
Current assessment methods rely on AI-annotated preference labels from traditional tasks.
We introduce VL-RewardBench, a benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks.
arXiv Detail & Related papers (2024-11-26T14:08:34Z) - Intriguing Properties of Large Language and Vision Models [18.449076451976236]
Large language and vision models (LLVMs) have received significant attention and development efforts due to their remarkable generalization performance.
Despite their achievements in advanced reasoning tasks, their performance on fundamental perception-related tasks remains surprisingly low.
We investigate this question by evaluating the most common LLVM's families (i.e., LLaVA) across 10 evaluation benchmarks.
arXiv Detail & Related papers (2024-10-07T05:07:01Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.