An Improved Quantum Algorithm of the Multislice Method
- URL: http://arxiv.org/abs/2411.17482v1
- Date: Tue, 26 Nov 2024 14:47:51 GMT
- Title: An Improved Quantum Algorithm of the Multislice Method
- Authors: Y. C. Wang, Y. Sun, Z. J. Ding,
- Abstract summary: The multisilce method is an important algorithm for electron diffraction and image simulations in transmission electron microscopy.
In this work we have developed an improved quantum algorithm.
We reconstruct the phase-shifting quantum circuit without using the multi-controlled quantum gates, thereby significantly improve the computation efficiency.
- Score: 0.716879432974126
- License:
- Abstract: The multisilce method is an important algorithm for electron diffraction and image simulations in transmission electron microscopy. We have proposed a quantum algorithm of the multislice method based on quantum circuit model previously. In this work we have developed an improved quantum algorithm. We reconstruct the phase-shifting quantum circuit without using the multi-controlled quantum gates, thereby significantly improve the computation efficiency. The new quantum circuit also allows further gate count reduction at the cost of a controllable error. We have simulated the quantum circuit on a classical supercomputer and analyzed the result to prove the feasibility and correctness of the improved quantum algorithm. We also provide proper parameter settings through testing, allowing the minimization of the necessary number of quantum gates while limiting the relative error within 1%. This work demonstrates the potential of applying quantum computing to electron diffraction simulations and achieving quantum advantages.
Related papers
- A Quantum Approximate Optimization Method For Finding Hadamard Matrices [0.0]
We propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer.
We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
arXiv Detail & Related papers (2024-08-15T06:25:50Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
We show that a minimal SWAP-gate count for executing a quantum circuit on a device emerges via the minimization of the distance between quantum states.
This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.
arXiv Detail & Related papers (2024-02-01T10:32:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Towards Quantum Simulations in Particle Physics and Beyond on Noisy
Intermediate-Scale Quantum Devices [1.7242431149740054]
We review two algorithmic advances that bring us closer to reliable quantum simulations of model systems in high energy physics.
The first method is the dimensional expressivity analysis of quantum circuits, which allows for constructing minimal but maximally expressive quantum circuits.
The second method is an efficient mitigation of readout errors on quantum devices.
arXiv Detail & Related papers (2021-10-07T22:13:37Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum circuit synthesis of Bell and GHZ states using projective
simulation in the NISQ era [0.0]
We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis for noise quantum computers with limited number of qubits.
Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased.
arXiv Detail & Related papers (2021-04-27T16:11:27Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.