Quantum-Chiplet: A Novel Python-Based Efficient and Scalable Design Methodology for Quantum Circuit Verification and Implementation
- URL: http://arxiv.org/abs/2503.10054v1
- Date: Thu, 13 Mar 2025 05:12:41 GMT
- Title: Quantum-Chiplet: A Novel Python-Based Efficient and Scalable Design Methodology for Quantum Circuit Verification and Implementation
- Authors: Yu-Ting Kao, Hao-Yu Lu, Yeong-Jar Chang, Darsen Lu,
- Abstract summary: We propose a new quantum representation (QPR) to facilitate the analysis of massively parallel quantum computation.<n>For the verification of quantum circuits, we introduce Quantum-Chiplet, a hierarchical quantum behavior modeling methodology.<n>A quantum amplitude estimation example demonstrates that this method significantly improves the design process, with more than 10x speed-up compared to IBM Qiskit at 14 qubits.
- Score: 5.727672509269657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analysis and verification of quantum circuits are highly challenging, given the exponential dependence of the number of states on the number of qubits. For analytical derivation, we propose a new quantum polynomial representation (QPR) to facilitate the analysis of massively parallel quantum computation and detect subtle errors. For the verification of quantum circuits, we introduce Quantum-Chiplet, a hierarchical quantum behavior modeling methodology that facilitates rapid integration and simulation. Each chiplet is systematically transformed into quantum gates. For circuits involving n qubits and k quantum gates, the design complexity is reduced from "greater than O(2^n)" to O(k). This approach provides an open-source solution, enabling a highly customized solution for quantum circuit simulation within the native Python environment, thereby reducing reliance on traditional simulation packages. A quantum amplitude estimation example demonstrates that this method significantly improves the design process, with more than 10x speed-up compared to IBM Qiskit at 14 qubits.
Related papers
- Efficient Quantum Circuit Compilation for Near-Term Quantum Advantage [17.38734393793605]
We propose an approximate method for compiling target quantum circuits into brick-wall layouts.<n>This new circuit design consists of two-qubit CNOT gates that can be directly implemented on real quantum computers.
arXiv Detail & Related papers (2025-01-13T15:04:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Parameterized quantum comb and simpler circuits for reversing unknown qubit-unitary operations [8.14510296131348]
We propose PQComb to harness the full potential of quantum combs for diverse quantum process transformation tasks.
We present two streamlined protocols for the time-reversal simulation of unknown qubit unitary evolutions.
We also extend PQComb to solve the problems of qutrit unitary transformation and channel discrimination.
arXiv Detail & Related papers (2024-03-06T14:53:24Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
We show that a minimal SWAP-gate count for executing a quantum circuit on a device emerges via the minimization of the distance between quantum states.
This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.
arXiv Detail & Related papers (2024-02-01T10:32:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.