論文の概要: Learning Visual Hierarchies with Hyperbolic Embeddings
- arxiv url: http://arxiv.org/abs/2411.17490v1
- Date: Tue, 26 Nov 2024 14:58:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:46.641751
- Title: Learning Visual Hierarchies with Hyperbolic Embeddings
- Title(参考訳): 双曲的埋め込みによる視覚階層学習
- Authors: Ziwei Wang, Sameera Ramasinghe, Chenchen Xu, Julien Monteil, Loris Bazzani, Thalaiyasingam Ajanthan,
- Abstract要約: 本稿では,ハイパーボリック空間におけるユーザ定義のマルチレベル視覚階層を,明示的な階層ラベルを必要とせずに符号化できる学習パラダイムを提案する。
階層的検索タスクの大幅な改善を示し、視覚的階層を捉える上でのモデルの有効性を示す。
- 参考スコア(独自算出の注目度): 28.35250955426006
- License:
- Abstract: Structuring latent representations in a hierarchical manner enables models to learn patterns at multiple levels of abstraction. However, most prevalent image understanding models focus on visual similarity, and learning visual hierarchies is relatively unexplored. In this work, for the first time, we introduce a learning paradigm that can encode user-defined multi-level visual hierarchies in hyperbolic space without requiring explicit hierarchical labels. As a concrete example, first, we define a part-based image hierarchy using object-level annotations within and across images. Then, we introduce an approach to enforce the hierarchy using contrastive loss with pairwise entailment metrics. Finally, we discuss new evaluation metrics to effectively measure hierarchical image retrieval. Encoding these complex relationships ensures that the learned representations capture semantic and structural information that transcends mere visual similarity. Experiments in part-based image retrieval show significant improvements in hierarchical retrieval tasks, demonstrating the capability of our model in capturing visual hierarchies.
- Abstract(参考訳): 階層的な方法で潜在表現を構造化することで、モデルは複数の抽象レベルでパターンを学ぶことができる。
しかし、最も一般的な画像理解モデルは、視覚的類似性に焦点を当てており、視覚的階層の学習は、比較的未探索である。
本研究では,ハイパーボリック空間におけるユーザ定義のマルチレベル視覚階層を,明示的な階層ラベルを必要とせずに符号化できる学習パラダイムを初めて導入する。
まず、具体例として、画像内および画像間のオブジェクトレベルのアノテーションを用いて、部分ベースの画像階層を定義する。
そこで本稿では,比較的損失を用いた階層化手法を提案する。
最後に,階層的画像検索を効果的に評価するための新しい評価指標について検討する。
これらの複雑な関係を符号化することで、学習された表現が単に視覚的類似性を超えた意味的および構造的情報をキャプチャすることを保証する。
部分的画像検索実験では階層的検索タスクが大幅に改善され,視覚的階層を捉える上でのモデルの有効性が示された。
関連論文リスト
- Emergent Visual-Semantic Hierarchies in Image-Text Representations [13.300199242824934]
既存の基盤モデルの知識について検討し、視覚・意味的階層の創発的な理解を示すことを明らかにする。
本稿では,階層的理解の探索と最適化を目的としたRadial Embedding (RE)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-11T14:09:42Z) - Improving Visual Recognition with Hyperbolical Visual Hierarchy Mapping [33.405667735101595]
我々は、事前訓練されたディープニューラルネットワーク(DNN)の構造的理解を高めるための視覚階層型マッパー(Hi-Mapper)を提案する。
Hi-Mapperは,1)確率密度のカプセル化による階層木の事前定義,2)新しい階層的コントラスト損失を伴う双曲空間における階層関係の学習により,視覚シーンの階層構造を解明する。
論文 参考訳(メタデータ) (2024-04-01T07:45:42Z) - HGCLIP: Exploring Vision-Language Models with Graph Representations for Hierarchical Understanding [18.95003393925676]
異なる階層レベルでカテゴリを分類する場合、従来のユニモーダルアプローチは主にイメージ機能に焦点を当て、複雑なシナリオにおける制限を明らかにする。
ビジョンランゲージモデル(VLM)とクラス階層を統合する最近の研究は、将来性を示しているが、階層関係を完全に活用するには至っていない。
本稿では,CLIPとグラフ表現学習による階層型クラス構造のより深い活用を効果的に組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-23T15:42:42Z) - Integrating Visual and Semantic Similarity Using Hierarchies for Image
Retrieval [0.46040036610482665]
視覚的階層構造を用いて視覚的および意味的類似性の両方をキャプチャするCBIRの手法を提案する。
階層構造は、分類のために訓練されたディープニューラルネットワークの潜在空間に重複する特徴を持つクラスをマージすることによって構築される。
本手法は,既存の画像検索手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-08-16T15:23:14Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
本稿では,すべての利用可能なラベルを活用でき,クラス間の階層的関係を維持できる階層型多言語表現学習フレームワークを提案する。
比較損失に階層的ペナルティを併用し,その階層的制約を強制する。
論文 参考訳(メタデータ) (2022-04-27T21:41:44Z) - Building a visual semantics aware object hierarchy [0.0]
視覚的意味論を意識したオブジェクト階層を構築するための新しい教師なし手法を提案する。
この論文の直感は、概念が階層的に組織化されている現実世界の知識表現から来ています。
評価は2つの部分から構成され、まず、構築された階層をオブジェクト認識タスクに適用し、その上で、視覚的階層と既存の語彙階層を比較して、提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-02-26T00:10:21Z) - Multi-level Second-order Few-shot Learning [111.0648869396828]
教師付きまたは教師なしの少数ショット画像分類と少数ショット動作認識のためのマルチレベル2次数列学習ネットワーク(MlSo)を提案する。
我々は、パワーノーマライズされた二階学習者ストリームと、複数のレベルの視覚的抽象化を表現する機能を組み合わせた、いわゆる2階学習者ストリームを活用している。
我々は,Omniglot, mini-ImageNet, tiered-ImageNet, Open MIC, CUB Birds, Stanford Dogs, Cars, HMDB51, UCF101, mini-MITなどのアクション認識データセットなどの標準データセットに対して,優れた結果を示す。
論文 参考訳(メタデータ) (2022-01-15T19:49:00Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
まずラベル階層の知識を任意のCNNベースの分類器に注入する。
画像からの視覚的セマンティクスと組み合わせた外部セマンティクス情報の利用が全体的な性能を高めることを実証的に示す。
論文 参考訳(メタデータ) (2020-04-02T10:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。