Multiscale spatiotemporal heterogeneity analysis of bike-sharing system's self-loop phenomenon: Evidence from Shanghai
- URL: http://arxiv.org/abs/2411.17555v1
- Date: Tue, 26 Nov 2024 16:18:38 GMT
- Title: Multiscale spatiotemporal heterogeneity analysis of bike-sharing system's self-loop phenomenon: Evidence from Shanghai
- Authors: Yichen Wang, Qing Yu, Yancun Song, Quan Yuan, Chao Yang, Chengcheng Yu,
- Abstract summary: This study conducts a multiscale analysis with a spatial autoregressive model and double machine learning framework.
Results reveal that bike-sharing self-loop intensity exhibits significant spatial lag effect at street scale.
To enhance bike-sharing cooperation, we advocate augmenting bicycle availability in areas with high metro usage and low bus coverage.
- Score: 8.946633693774283
- License:
- Abstract: Bike-sharing is an environmentally friendly shared mobility mode, but its self-loop phenomenon, where bikes are returned to the same station after several time usage, significantly impacts equity in accessing its services. Therefore, this study conducts a multiscale analysis with a spatial autoregressive model and double machine learning framework to assess socioeconomic features and geospatial location's impact on the self-loop phenomenon at metro stations and street scales. The results reveal that bike-sharing self-loop intensity exhibits significant spatial lag effect at street scale and is positively associated with residential land use. Marginal treatment effects of residential land use is higher on streets with middle-aged residents, high fixed employment, and low car ownership. The multimodal public transit condition reveals significant positive marginal treatment effects at both scales. To enhance bike-sharing cooperation, we advocate augmenting bicycle availability in areas with high metro usage and low bus coverage, alongside implementing adaptable redistribution strategies.
Related papers
- Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
We present the first study to utilize a Graph Convolutional Network architecture to model link-level bicycling volumes.
We estimate the Annual Average Daily Bicycle (AADB) counts across the City of Melbourne, Australia using Strava Metro bicycling count data.
Our results show that the GCN model performs better than these traditional models in predicting AADB counts.
arXiv Detail & Related papers (2024-10-11T04:53:18Z) - Mining individual daily commuting patterns of dockless bike-sharing users: a two-layer framework integrating spatiotemporal flow clustering and rule-based decision trees [3.3988622291971247]
This paper presents a framework to mine individual cyclists' daily home-work commuting patterns from dockless bike-sharing trip data with user IDs.
The effectiveness and applicability of the framework is demonstrated by over 200 million bike-sharing trip records in Shenzhen.
Lots of bike-sharing commuters live near urban villages and old communities with lower costs of living, especially in the central city.
arXiv Detail & Related papers (2024-07-13T09:30:51Z) - From Counting Stations to City-Wide Estimates: Data-Driven Bicycle Volume Extrapolation [0.0]
Street-level bicycle volume information would aid cities in planning targeted infrastructure improvements to encourage cycling.
The data currently available to cities and citizens often only comes from sparsely located counting stations.
This paper extrapolates bicycle volume beyond these few locations to estimate bicycle volume for the entire city of Berlin.
arXiv Detail & Related papers (2024-06-26T16:01:53Z) - Are footpaths encroached by shared e-scooters? Spatio-temporal Analysis
of Micro-mobility Services [19.15684785810306]
We employ a combination of methods that analyse both spatial and temporal characteristics related to e-scooter trips.
Population density is the topmost important feature, and it associates with e-scooter usage positively.
We found that the effect of humidity is more important than precipitation in predicting hourly e-scooter trip count.
arXiv Detail & Related papers (2023-04-18T04:27:56Z) - Predicting Citi Bike Demand Evolution Using Dynamic Graphs [81.12174591442479]
We apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
In this paper, we attempt to apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
arXiv Detail & Related papers (2022-12-18T21:43:27Z) - Bike Sharing Demand Prediction based on Knowledge Sharing across Modes:
A Graph-based Deep Learning Approach [8.695763084463055]
This study proposes a graph-based deep learning approach for bike sharing demand prediction (B-MRGNN) with multimodal historical data as input.
A multi-relational graph neural network (MRGNN) is introduced to capture correlations between spatial units across modes.
Experiments are conducted using real-world bike sharing, subway and ride-hailing data from New York City.
arXiv Detail & Related papers (2022-03-18T06:10:17Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
We propose one new prediction model named Social Soft Attention Graph Convolution Network (SSAGCN)
SSAGCN aims to simultaneously handle social interactions among pedestrians and scene interactions between pedestrians and environments.
Experiments on public available datasets prove the effectiveness of SSAGCN and have achieved state-of-the-art results.
arXiv Detail & Related papers (2021-12-05T01:49:18Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Simulation study on the fleet performance of shared autonomous bicycles [2.8511319162856674]
An autonomous bicycle-sharing system would combine vehicle sharing, electrification, autonomy, and micro-mobility.
There is a need to quantify the potential impact of autonomy on fleet performance and user experience.
This paper presents an ad-hoc agent-based simulator that provides an in-depth understanding of the fleet behavior of autonomous bicycle-sharing systems.
arXiv Detail & Related papers (2021-06-17T17:47:08Z) - Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems
using Multi-objective Reinforcement Learning [79.61517670541863]
How to use AI to provide efficient bicycle dispatching solutions based on dynamic bicycle rental demand is an essential issue for dockless PBS (DL-PBS)
We propose a dynamic bicycle dispatching algorithm based on multi-objective reinforcement learning (MORL-BD) to provide the optimal bicycle dispatching solution for DL-PBS.
arXiv Detail & Related papers (2021-01-19T03:09:51Z) - Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing
System Using Gated Graph Neural Network [79.61517670541863]
Dockless Public Bicycle-sharing (DL-PBS) network becomes increasingly popular in many countries.
redundant and low-utility stations waste public urban space and maintenance costs of DL-PBS vendors.
We propose a Bicycle Station Dynamic Planning (BSDP) system to dynamically provide the optimal bicycle station layout for the DL-PBS network.
arXiv Detail & Related papers (2021-01-19T02:51:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.