論文の概要: What Differentiates Educational Literature? A Multimodal Fusion Approach of Transformers and Computational Linguistics
- arxiv url: http://arxiv.org/abs/2411.17593v1
- Date: Tue, 26 Nov 2024 17:01:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:21.996711
- Title: What Differentiates Educational Literature? A Multimodal Fusion Approach of Transformers and Computational Linguistics
- Title(参考訳): 教育文学の違い : 変圧器と計算言語学のマルチモーダル融合アプローチ
- Authors: Jordan J. Bird,
- Abstract要約: 英語カリキュラムへの新しい文学の統合は、様々な教室のニーズに対して、読みやすさとテキストの適応を迅速に評価するスケーラブルなツールがしばしば欠如しているため、依然として課題である。
本研究は,変圧器を用いたテキスト分類と言語的特徴分析を組み合わせたマルチモーダル手法により,このギャップに対処することを提案する。
提案手法は、ステークホルダーが対象とするWebアプリケーションにカプセル化され、非技術ステークホルダーが、テキストの複雑さ、読みやすさ、カリキュラムのアライメント、学習年齢範囲に関するリアルタイムな洞察にアクセスできるようにする。
- 参考スコア(独自算出の注目度): 0.7342677574855649
- License:
- Abstract: The integration of new literature into the English curriculum remains a challenge since educators often lack scalable tools to rapidly evaluate readability and adapt texts for diverse classroom needs. This study proposes to address this gap through a multimodal approach that combines transformer-based text classification with linguistic feature analysis to align texts with UK Key Stages. Eight state-of-the-art Transformers were fine-tuned on segmented text data, with BERT achieving the highest unimodal F1 score of 0.75. In parallel, 500 deep neural network topologies were searched for the classification of linguistic characteristics, achieving an F1 score of 0.392. The fusion of these modalities shows a significant improvement, with every multimodal approach outperforming all unimodal models. In particular, the ELECTRA Transformer fused with the neural network achieved an F1 score of 0.996. The proposed approach is finally encapsulated in a stakeholder-facing web application, providing non-technical stakeholder access to real-time insights on text complexity, reading difficulty, curriculum alignment, and recommendations for learning age range. The application empowers data-driven decision making and reduces manual workload by integrating AI-based recommendations into lesson planning for English literature.
- Abstract(参考訳): 英語カリキュラムへの新しい文学の統合は、様々な教室のニーズに対して、読みやすさとテキストの適応を迅速に評価するスケーラブルなツールがしばしば欠如しているため、依然として課題である。
本研究は,変圧器を用いたテキスト分類と言語的特徴分析を組み合わせたマルチモーダル手法により,このギャップに対処することを提案する。
8つの最先端トランスフォーマーがセグメント化されたテキストデータに基づいて微調整され、BERTはF1スコアが0.75である。
同時に500の深いニューラルネットワークトポロジを探索し, F1スコア0.392を達成した。
これらのモダリティの融合は、全てのマルチモーダルアプローチが全ての単調モデルより優れており、顕著な改善を示している。
特に、ニューラルネットワークと融合したELECTRA変換器は、F1スコアが0.996である。
提案手法は、ステークホルダーが対象とするWebアプリケーションにカプセル化され、非技術ステークホルダーが、テキストの複雑さ、読みやすさ、カリキュラムのアライメント、学習年齢範囲に関するリアルタイムな洞察にアクセスできるようにする。
このアプリケーションは、AIベースのレコメンデーションを英語文学のレッスンプランニングに統合することで、データ駆動による意思決定を強化し、手作業の負荷を削減する。
関連論文リスト
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Findings of the Second BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora [79.03392191805028]
BabyLM Challengeは、人間と計算言語学習者のデータ効率ギャップを埋めるためのコミュニティの取り組みである。
参加者は1億ワード以下の固定言語データ予算で、言語モデルトレーニングを最適化するために競争する。
論文 参考訳(メタデータ) (2024-12-06T16:06:08Z) - Prompting Multi-Modal Tokens to Enhance End-to-End Autonomous Driving Imitation Learning with LLMs [10.812418229495506]
本稿では,基本的運転模倣学習と大規模言語モデルを組み合わせることで,自律運転のためのハイブリッドエンド・ツー・エンド学習フレームワークを提案する。
提案手法は、CARLAによるオフライン評価において、49.21%の運転スコアと91.34%のルート完了率を得ることができる。
論文 参考訳(メタデータ) (2024-04-07T08:31:12Z) - Few-shot learning for automated content analysis: Efficient coding of
arguments and claims in the debate on arms deliveries to Ukraine [0.9576975587953563]
トランスフォーマーニューラルネットワークに基づく事前学習言語モデル(PLM)は、通信科学における自動コンテンツ分析を改善する大きな機会を提供する。
これまでの3つの特徴は、NLP研究における英語モデルの優位性、必要な計算資源、微調整 PLM の訓練データ作成に必要な労力など、適用分野における手法の普及を妨げている。
我々は、われわれのアプローチを、コミュニケーション科学の現実的なユースケースで試し、主張や議論を自動的に検出し、ドイツによるウクライナへの武器の配達に関する議論におけるスタンスと合わせて検証する。
論文 参考訳(メタデータ) (2023-12-28T11:39:08Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
大規模言語モデル(LLM)は、人間の文章によく似たテキストを生成する際、顕著な能力を示した。
人工的に生成されたテキストと人間が作成したテキストを区別できる自動化アプローチを構築することが不可欠である。
本稿では,複数の構成 LLM からの予測をまとめて,シンプルで効率的な解を提案する。
論文 参考訳(メタデータ) (2023-11-06T13:11:02Z) - Text Summarization Using Large Language Models: A Comparative Study of
MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models [0.0]
Leveraging Large Language Models (LLMs) は、要約技術の強化において、顕著な将来性を示している。
本稿では,MPT-7b-instruct,falcon-7b-instruct,OpenAI ChatGPT text-davinci-003 モデルなど,多種多様な LLM を用いたテキスト要約について検討する。
論文 参考訳(メタデータ) (2023-10-16T14:33:02Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
NLPタスク(TextFlint)のための多言語ロバスト性評価プラットフォームを提案する。
普遍的なテキスト変換、タスク固有の変換、敵攻撃、サブポピュレーション、およびそれらの組み合わせを取り入れ、包括的な堅牢性分析を提供する。
TextFlintは、モデルの堅牢性の欠点に対処するために、完全な分析レポートとターゲットとした拡張データを生成します。
論文 参考訳(メタデータ) (2021-03-21T17:20:38Z) - An Attention Ensemble Approach for Efficient Text Classification of
Indian Languages [0.0]
本稿では,インド・デヴァナガリ文字を母語とするマラーティー語における短文文書の細かな技術領域識別について述べる。
畳み込みニューラルネットワークが生成する中間文表現と双方向の長期記憶とを合体させ,効率的なテキスト分類を実現するcnn-bilstm注意アンサンブルモデルを提案する。
実験結果から,提案モデルが与えられたタスクにおける各種ベースライン機械学習および深層学習モデルより優れ,89.57%,f1スコア0.8875の検証精度が得られた。
論文 参考訳(メタデータ) (2021-02-20T07:31:38Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。