What Differentiates Educational Literature? A Multimodal Fusion Approach of Transformers and Computational Linguistics
- URL: http://arxiv.org/abs/2411.17593v1
- Date: Tue, 26 Nov 2024 17:01:27 GMT
- Title: What Differentiates Educational Literature? A Multimodal Fusion Approach of Transformers and Computational Linguistics
- Authors: Jordan J. Bird,
- Abstract summary: The integration of new literature into the English curriculum remains a challenge since educators often lack scalable tools to rapidly evaluate readability and adapt texts for diverse classroom needs.
This study proposes to address this gap through a multimodal approach that combines transformer-based text classification with linguistic feature analysis to align texts with UK Key Stages.
The proposed approach is finally encapsulated in a stakeholder-facing web application, providing non-technical stakeholder access to real-time insights on text complexity, reading difficulty, curriculum alignment, and recommendations for learning age range.
- Score: 0.7342677574855649
- License:
- Abstract: The integration of new literature into the English curriculum remains a challenge since educators often lack scalable tools to rapidly evaluate readability and adapt texts for diverse classroom needs. This study proposes to address this gap through a multimodal approach that combines transformer-based text classification with linguistic feature analysis to align texts with UK Key Stages. Eight state-of-the-art Transformers were fine-tuned on segmented text data, with BERT achieving the highest unimodal F1 score of 0.75. In parallel, 500 deep neural network topologies were searched for the classification of linguistic characteristics, achieving an F1 score of 0.392. The fusion of these modalities shows a significant improvement, with every multimodal approach outperforming all unimodal models. In particular, the ELECTRA Transformer fused with the neural network achieved an F1 score of 0.996. The proposed approach is finally encapsulated in a stakeholder-facing web application, providing non-technical stakeholder access to real-time insights on text complexity, reading difficulty, curriculum alignment, and recommendations for learning age range. The application empowers data-driven decision making and reduces manual workload by integrating AI-based recommendations into lesson planning for English literature.
Related papers
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
"pointer-guided segment ordering" (SO) is a novel pre-training technique aimed at enhancing the contextual understanding of paragraph-level text representations.
Our experiments show that pointer-guided pre-training significantly enhances the model's ability to understand complex document structures.
arXiv Detail & Related papers (2024-06-06T15:17:51Z) - A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
Natural language inference is a proxy for natural language understanding.
There is no publicly available NLI corpus for the Romanian language.
We introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs.
arXiv Detail & Related papers (2024-05-20T08:41:15Z) - Few-shot learning for automated content analysis: Efficient coding of
arguments and claims in the debate on arms deliveries to Ukraine [0.9576975587953563]
Pre-trained language models (PLM) based on transformer neural networks offer great opportunities to improve automatic content analysis in communication science.
Three characteristics so far impeded the widespread adoption of the methods in the applying disciplines: the dominance of English language models in NLP research, the necessary computing resources, and the effort required to produce training data to fine-tune PLMs.
We test our approach on a realistic use case from communication science to automatically detect claims and arguments together with their stance in the German news debate on arms deliveries to Ukraine.
arXiv Detail & Related papers (2023-12-28T11:39:08Z) - Text Summarization Using Large Language Models: A Comparative Study of
MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models [0.0]
Leveraging Large Language Models (LLMs) has shown remarkable promise in enhancing summarization techniques.
This paper embarks on an exploration of text summarization with a diverse set of LLMs, including MPT-7b-instruct, falcon-7b-instruct, and OpenAI ChatGPT text-davinci-003 models.
arXiv Detail & Related papers (2023-10-16T14:33:02Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
This work proposes the first to our knowledge systematic study of formality detection methods based on statistical, neural-based, and Transformer-based machine learning methods.
We conducted three types of experiments -- monolingual, multilingual, and cross-lingual.
The study shows the overcome of Char BiLSTM model over Transformer-based ones for the monolingual and multilingual formality classification task.
arXiv Detail & Related papers (2022-04-19T16:23:07Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
We propose a multilingual robustness evaluation platform for NLP tasks (TextFlint)
It incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analysis.
TextFlint generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model's robustness.
arXiv Detail & Related papers (2021-03-21T17:20:38Z) - An Attention Ensemble Approach for Efficient Text Classification of
Indian Languages [0.0]
This paper focuses on the coarse-grained technical domain identification of short text documents in Marathi, a Devanagari script-based Indian language.
A hybrid CNN-BiLSTM attention ensemble model is proposed that competently combines the intermediate sentence representations generated by the convolutional neural network and the bidirectional long short-term memory, leading to efficient text classification.
Experimental results show that the proposed model outperforms various baseline machine learning and deep learning models in the given task, giving the best validation accuracy of 89.57% and f1-score of 0.8875.
arXiv Detail & Related papers (2021-02-20T07:31:38Z) - Towards Making the Most of Context in Neural Machine Translation [112.9845226123306]
We argue that previous research did not make a clear use of the global context.
We propose a new document-level NMT framework that deliberately models the local context of each sentence.
arXiv Detail & Related papers (2020-02-19T03:30:00Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP)
In this paper, we explore the landscape of introducing transfer learning techniques for NLP by a unified framework that converts all text-based language problems into a text-to-text format.
arXiv Detail & Related papers (2019-10-23T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.