Agentic AI for Improving Precision in Identifying Contributions to Sustainable Development Goals
- URL: http://arxiv.org/abs/2411.17598v1
- Date: Tue, 26 Nov 2024 17:06:30 GMT
- Title: Agentic AI for Improving Precision in Identifying Contributions to Sustainable Development Goals
- Authors: William A. Ingram, Bipasha Banerjee, Edward A. Fox,
- Abstract summary: This study investigates the application of autoregressive Large Language Models (LLMs) as evaluation agents to identify relevant scholarly contributions to United Nations' (UN) targets in scholarly publications.
We demonstrate that small, locally-hosted LLMs can differentiate semantically relevant contributions to SDG targets from documents retrieved due to incidental keyword matches, addressing the limitations of traditional methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As research institutions increasingly commit to supporting the United Nations' Sustainable Development Goals (SDGs), there is a pressing need to accurately assess their research output against these goals. Current approaches, primarily reliant on keyword-based Boolean search queries, conflate incidental keyword matches with genuine contributions, reducing retrieval precision and complicating benchmarking efforts. This study investigates the application of autoregressive Large Language Models (LLMs) as evaluation agents to identify relevant scholarly contributions to SDG targets in scholarly publications. Using a dataset of academic abstracts retrieved via SDG-specific keyword queries, we demonstrate that small, locally-hosted LLMs can differentiate semantically relevant contributions to SDG targets from documents retrieved due to incidental keyword matches, addressing the limitations of traditional methods. By leveraging the contextual understanding of LLMs, this approach provides a scalable framework for improving SDG-related research metrics and informing institutional reporting.
Related papers
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - Scientific Paper Retrieval with LLM-Guided Semantic-Based Ranking [32.40639079110799]
SemRank is an effective and efficient paper retrieval framework.<n>It combines query understanding with a concept-based semantic index.<n> Experiments show that SemRank consistently improves the performance of various base retrievers.
arXiv Detail & Related papers (2025-05-27T22:49:18Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs [70.79124435220695]
We propose a novel unified Semantic-enhanced generative Cross-mOdal REtrieval framework (SemCORE)
We first construct a Structured natural language IDentifier (SID) that effectively aligns target identifiers with generative models optimized for natural language comprehension and generation.
We then introduce a Generative Semantic Verification (GSV) strategy enabling fine-grained target discrimination.
arXiv Detail & Related papers (2025-04-17T17:59:27Z) - Insight-RAG: Enhancing LLMs with Insight-Driven Augmentation [4.390998479503661]
We propose Insight-RAG, a novel framework designed to retrieve documents based on insights.
In the initial stage of Insight-RAG, instead of using traditional retrieval methods, we employ an LLM to analyze the input query and task.
By integrating the original query with the retrieved insights, similar to conventional RAG approaches, we employ a final LLM to generate a contextually enriched and accurate response.
arXiv Detail & Related papers (2025-03-31T19:50:27Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [54.787341008881036]
We introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors.
ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.
Experimental results demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.
These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.
This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Harmonizing Metadata of Language Resources for Enhanced Querying and Accessibility [0.0]
This paper addresses the harmonization of metadata from diverse repositories of language resources (LRs)
Our methodology supports text-based search, faceted browsing, and advanced SPARQL queries through Linghub, a newly developed portal.
The study highlights significant metadata issues and advocates for adherence to open vocabularies and standards to enhance metadata harmonization.
arXiv Detail & Related papers (2025-01-09T22:48:43Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.
Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.
We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs.
Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency.
Future research directions are proposed, focusing on improving the robustness of RAG models.
arXiv Detail & Related papers (2024-10-03T22:29:47Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation [51.8188846284153]
RAG has been widely adopted to enhance Large Language Models (LLMs)
Attributed Text Generation (ATG) has attracted growing attention, which provides citations to support the model's responses in RAG.
This paper proposes a fine-grained ATG method called ReClaim(Refer & Claim), which alternates the generation of references and answers step by step.
arXiv Detail & Related papers (2024-07-01T20:47:47Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - ResearchArena: Benchmarking Large Language Models' Ability to Collect and Organize Information as Research Agents [21.17856299966841]
This study introduces ResearchArena, a benchmark designed to evaluate large language models (LLMs) in conducting academic surveys.
To support these opportunities, we construct an environment of 12M full-text academic papers and 7.9K survey papers.
arXiv Detail & Related papers (2024-06-13T03:26:30Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements.
This paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation.
It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies.
arXiv Detail & Related papers (2024-04-17T01:27:42Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
We show that applying a discretizing bottleneck can improve performance in goal-conditioned RL setups.
We experimentally prove the expected return on out-of-distribution goals, while still allowing for specifying goals with expressive structure.
arXiv Detail & Related papers (2022-11-01T03:31:43Z) - Interpretable Research Replication Prediction via Variational Contextual
Consistency Sentence Masking [14.50690911709558]
Research Replication Prediction (RRP) is the task of predicting whether a published research result can be replicated or not.
In this work, we propose the Variational Contextual Consistency Sentence Masking (VCCSM) method to automatically extract key sentences.
Results of our experiments on RRP along with European Convention of Human Rights (ECHR) datasets demonstrate that VCCSM is able to improve the model interpretability for the long document classification tasks.
arXiv Detail & Related papers (2022-03-28T03:27:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.