Accelerating Vision Diffusion Transformers with Skip Branches
- URL: http://arxiv.org/abs/2411.17616v1
- Date: Tue, 26 Nov 2024 17:28:10 GMT
- Title: Accelerating Vision Diffusion Transformers with Skip Branches
- Authors: Guanjie Chen, Xinyu Zhao, Yucheng Zhou, Tianlong Chen, Cheng Yu,
- Abstract summary: Diffusion Transformers (DiT) are an emerging image and video generation model architecture.
DiT's practical deployment is constrained by computational complexity and redundancy in the sequential denoising process.
We introduce Skip-DiT, which converts standard DiT into Skip-DiT with skip branches to enhance feature smoothness.
We also introduce Skip-Cache which utilizes the skip branches to cache DiT features across timesteps at the inference time.
- Score: 46.19946204953147
- License:
- Abstract: Diffusion Transformers (DiT), an emerging image and video generation model architecture, has demonstrated great potential because of its high generation quality and scalability properties. Despite the impressive performance, its practical deployment is constrained by computational complexity and redundancy in the sequential denoising process. While feature caching across timesteps has proven effective in accelerating diffusion models, its application to DiT is limited by fundamental architectural differences from U-Net-based approaches. Through empirical analysis of DiT feature dynamics, we identify that significant feature variation between DiT blocks presents a key challenge for feature reusability. To address this, we convert standard DiT into Skip-DiT with skip branches to enhance feature smoothness. Further, we introduce Skip-Cache which utilizes the skip branches to cache DiT features across timesteps at the inference time. We validated effectiveness of our proposal on different DiT backbones for video and image generation, showcasing skip branches to help preserve generation quality and achieve higher speedup. Experimental results indicate that Skip-DiT achieves a 1.5x speedup almost for free and a 2.2x speedup with only a minor reduction in quantitative metrics. Code is available at https://github.com/OpenSparseLLMs/Skip-DiT.git.
Related papers
- SmoothCache: A Universal Inference Acceleration Technique for Diffusion Transformers [4.7170474122879575]
Diffusion Transformers (DiT) have emerged as powerful generative models for various tasks, including image, video, and speech synthesis.
We introduce SmoothCache, a model-agnostic inference acceleration technique for DiT architectures.
Our experiments demonstrate that SmoothCache achieves 71% 8% to speed up while maintaining or even improving generation quality across diverse modalities.
arXiv Detail & Related papers (2024-11-15T16:24:02Z) - Adaptive Caching for Faster Video Generation with Diffusion Transformers [52.73348147077075]
Diffusion Transformers (DiTs) rely on larger models and heavier attention mechanisms, resulting in slower inference speeds.
We introduce a training-free method to accelerate video DiTs, termed Adaptive Caching (AdaCache)
We also introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, controlling the compute allocation based on motion content.
arXiv Detail & Related papers (2024-11-04T18:59:44Z) - SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
We propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation.
SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead.
arXiv Detail & Related papers (2024-10-28T07:13:25Z) - $Δ$-DiT: A Training-Free Acceleration Method Tailored for Diffusion Transformers [13.433352602762511]
We propose an overall training-free inference acceleration framework $Delta$-DiT.
$Delta$-DiT uses a designed cache mechanism to accelerate the rear DiT blocks in the early sampling stages and the front DiT blocks in the later stages.
Experiments on PIXART-$alpha$ and DiT-XL demonstrate that the $Delta$-DiT can achieve a $1.6times$ speedup on the 20-step generation.
arXiv Detail & Related papers (2024-06-03T09:10:44Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference [95.42299246592756]
We study the UNet encoder and empirically analyze the encoder features.
We find that encoder features change minimally, whereas the decoder features exhibit substantial variations across different time-steps.
We validate our approach on other tasks: text-to-video, personalized generation and reference-guided generation.
arXiv Detail & Related papers (2023-12-15T08:46:43Z) - CAIT: Triple-Win Compression towards High Accuracy, Fast Inference, and
Favorable Transferability For ViTs [79.54107547233625]
Vision Transformers (ViTs) have emerged as state-of-the-art models for various vision tasks.
We propose a joint compression method for ViTs that offers both high accuracy and fast inference speed.
Our proposed method can achieve state-of-the-art performance across various ViTs.
arXiv Detail & Related papers (2023-09-27T16:12:07Z) - Latent-Shift: Latent Diffusion with Temporal Shift for Efficient
Text-to-Video Generation [115.09597127418452]
Latent-Shift is an efficient text-to-video generation method based on a pretrained text-to-image generation model.
We show that Latent-Shift achieves comparable or better results while being significantly more efficient.
arXiv Detail & Related papers (2023-04-17T17:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.