SmoothCache: A Universal Inference Acceleration Technique for Diffusion Transformers
- URL: http://arxiv.org/abs/2411.10510v1
- Date: Fri, 15 Nov 2024 16:24:02 GMT
- Title: SmoothCache: A Universal Inference Acceleration Technique for Diffusion Transformers
- Authors: Joseph Liu, Joshua Geddes, Ziyu Guo, Haomiao Jiang, Mahesh Kumar Nandwana,
- Abstract summary: Diffusion Transformers (DiT) have emerged as powerful generative models for various tasks, including image, video, and speech synthesis.
We introduce SmoothCache, a model-agnostic inference acceleration technique for DiT architectures.
Our experiments demonstrate that SmoothCache achieves 71% 8% to speed up while maintaining or even improving generation quality across diverse modalities.
- Score: 4.7170474122879575
- License:
- Abstract: Diffusion Transformers (DiT) have emerged as powerful generative models for various tasks, including image, video, and speech synthesis. However, their inference process remains computationally expensive due to the repeated evaluation of resource-intensive attention and feed-forward modules. To address this, we introduce SmoothCache, a model-agnostic inference acceleration technique for DiT architectures. SmoothCache leverages the observed high similarity between layer outputs across adjacent diffusion timesteps. By analyzing layer-wise representation errors from a small calibration set, SmoothCache adaptively caches and reuses key features during inference. Our experiments demonstrate that SmoothCache achieves 8% to 71% speed up while maintaining or even improving generation quality across diverse modalities. We showcase its effectiveness on DiT-XL for image generation, Open-Sora for text-to-video, and Stable Audio Open for text-to-audio, highlighting its potential to enable real-time applications and broaden the accessibility of powerful DiT models.
Related papers
- Accelerating Vision Diffusion Transformers with Skip Branches [46.19946204953147]
Diffusion Transformers (DiT) are an emerging image and video generation model architecture.
DiT's practical deployment is constrained by computational complexity and redundancy in the sequential denoising process.
We introduce Skip-DiT, which converts standard DiT into Skip-DiT with skip branches to enhance feature smoothness.
We also introduce Skip-Cache which utilizes the skip branches to cache DiT features across timesteps at the inference time.
arXiv Detail & Related papers (2024-11-26T17:28:10Z) - Adaptive Caching for Faster Video Generation with Diffusion Transformers [52.73348147077075]
Diffusion Transformers (DiTs) rely on larger models and heavier attention mechanisms, resulting in slower inference speeds.
We introduce a training-free method to accelerate video DiTs, termed Adaptive Caching (AdaCache)
We also introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, controlling the compute allocation based on motion content.
arXiv Detail & Related papers (2024-11-04T18:59:44Z) - FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality [58.80996741843102]
FasterCache is a training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation.
We show that FasterCache can significantly accelerate video generation while keeping video quality comparable to the baseline.
arXiv Detail & Related papers (2024-10-25T07:24:38Z) - Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching [56.286064975443026]
We make an interesting and somehow surprising observation: the computation of a large proportion of layers in the diffusion transformer, through a caching mechanism, can be readily removed even without updating the model parameters.
We introduce a novel scheme, named Learningto-Cache (L2C), that learns to conduct caching in a dynamic manner for diffusion transformers.
Experimental results show that L2C largely outperforms samplers such as DDIM and DPM-r, alongside prior cache-based methods at the same inference speed.
arXiv Detail & Related papers (2024-06-03T18:49:57Z) - Cache Me if You Can: Accelerating Diffusion Models through Block Caching [67.54820800003375]
A large image-to-image network has to be applied many times to iteratively refine an image from random noise.
We investigate the behavior of the layers within the network and find that 1) the layers' output changes smoothly over time, 2) the layers show distinct patterns of change, and 3) the change from step to step is often very small.
We propose a technique to automatically determine caching schedules based on each block's changes over timesteps.
arXiv Detail & Related papers (2023-12-06T00:51:38Z) - DeepCache: Accelerating Diffusion Models for Free [65.02607075556742]
DeepCache is a training-free paradigm that accelerates diffusion models from the perspective of model architecture.
DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models.
Under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS.
arXiv Detail & Related papers (2023-12-01T17:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.