論文の概要: Synthetic Data Generation with LLM for Improved Depression Prediction
- arxiv url: http://arxiv.org/abs/2411.17672v1
- Date: Tue, 26 Nov 2024 18:31:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:03.360356
- Title: Synthetic Data Generation with LLM for Improved Depression Prediction
- Title(参考訳): LLMによる圧縮予測改善のための合成データ生成
- Authors: Andrea Kang, Jun Yu Chen, Zoe Lee-Youngzie, Shuhao Fu,
- Abstract要約: 本研究では, 抑うつ予測モデルの性能向上のために, 合成データを生成するための大規模言語モデルのためのパイプラインを提案する。
データの完全性とプライバシ保護の指標が満足できるだけでなく、トレーニングデータセットの重大度分布のバランスも取れた。
- 参考スコア(独自算出の注目度): 5.508617844957542
- License:
- Abstract: Automatic detection of depression is a rapidly growing field of research at the intersection of psychology and machine learning. However, with its exponential interest comes a growing concern for data privacy and scarcity due to the sensitivity of such a topic. In this paper, we propose a pipeline for Large Language Models (LLMs) to generate synthetic data to improve the performance of depression prediction models. Starting from unstructured, naturalistic text data from recorded transcripts of clinical interviews, we utilize an open-source LLM to generate synthetic data through chain-of-thought prompting. This pipeline involves two key steps: the first step is the generation of the synopsis and sentiment analysis based on the original transcript and depression score, while the second is the generation of the synthetic synopsis/sentiment analysis based on the summaries generated in the first step and a new depression score. Not only was the synthetic data satisfactory in terms of fidelity and privacy-preserving metrics, it also balanced the distribution of severity in the training dataset, thereby significantly enhancing the model's capability in predicting the intensity of the patient's depression. By leveraging LLMs to generate synthetic data that can be augmented to limited and imbalanced real-world datasets, we demonstrate a novel approach to addressing data scarcity and privacy concerns commonly faced in automatic depression detection, all while maintaining the statistical integrity of the original dataset. This approach offers a robust framework for future mental health research and applications.
- Abstract(参考訳): うつ病の自動検出は、心理学と機械学習の交差点における研究の急速に成長している分野である。
しかし、その指数関数的な関心によって、そのようなトピックの感度のためにデータのプライバシーと不足に対する懸念が高まっている。
本稿では,抑うつ予測モデルの性能を向上させるために,合成データを生成するLarge Language Models (LLMs) のパイプラインを提案する。
臨床面接の記録書から得られた非構造的・自然主義的なテキストデータから、我々はオープンソースのLCMを用いて、チェーン・オブ・シークレット・プロンプトを通じて合成データを生成する。
このパイプラインは、2つの重要なステップを含む: 第一ステップは、原文と抑うつスコアに基づいて、シナプスと感情分析の生成であり、第二ステップは、第一ステップで生成された要約と新しい抑うつスコアに基づいて、合成シナプス/感覚分析の生成である。
さらに, トレーニングデータセットの重症度分布のバランスを保ち, 患者のうつ病の強度を予測するためのモデルの能力を大幅に向上させた。
LLMを利用して、制限や不均衡な実世界のデータセットに拡張可能な合成データを生成することで、自動うつ病検出で直面するデータ不足やプライバシー問題に対処する新たなアプローチを実証し、元のデータセットの統計的整合性を維持しながら示す。
このアプローチは、将来のメンタルヘルス研究と応用のための堅牢なフレームワークを提供する。
関連論文リスト
- Generation of synthetic gait data: application to multiple sclerosis patients' gait patterns [0.0]
多発性硬化症(Multiple sclerosis, MS)は、若年者における非外傷性障害の主要な原因であり、その頻度は世界中で増加している。
MSにおける歩行障害の変動は、定量的歩行評価のための非侵襲的で敏感で費用対効果の高いツールの開発を必要とする。
eGait運動センサは、股関節回転を表す単位四元数時系列(QTS)を通して人間の歩行を特徴付けるように設計されており、有望なアプローチである。
しかし、臨床研究に典型的な小さなサンプルサイズは、歩行データ解析ツールの安定性に課題をもたらす。
論文 参考訳(メタデータ) (2024-11-15T17:32:01Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - Synthetic Oversampling: Theory and A Practical Approach Using LLMs to Address Data Imbalance [16.047084318753377]
不均衡なデータと急激な相関は、機械学習とデータサイエンスにおける一般的な課題である。
過度に表現されていないクラスのインスタンス数を人工的に増加させるオーバーサンプリングは、これらの課題に対処するために広く採用されている。
我々は,大規模言語モデルの能力を活用して,少数グループを対象とした高品質な合成データを生成する,体系的なオーバーサンプリング手法であるOPALを紹介する。
論文 参考訳(メタデータ) (2024-06-05T21:24:26Z) - The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data [40.165159490379146]
評価値が不偏であっても, 偽陽性の発見率(タイプ1の誤り)は不可避的に高いことが示唆された。
以前提案された補正係数が使用されているにもかかわらず、この問題は深層生成モデルに対して持続する。
論文 参考訳(メタデータ) (2023-12-13T02:04:41Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
本稿では,合成データに対する統計的手法の有効性と,合成データのプライバシーリスクについて考察する。
この枠組みにおける重要な発見は、合成データに対する統計的手法の誤差率は、より多くの合成データを追加することで減少するが、最終的には上昇または安定化する可能性があることを明らかにする世代効果である。
論文 参考訳(メタデータ) (2023-10-27T01:57:27Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
そこで本研究では,高品質な自然主義的合成隠蔽顔を製造するための2つの手法を提案する。
両手法の有効性とロバスト性を実証的に示す。
我々は,RealOccとRealOcc-Wildという,微細なアノテーションを付加した高精細な実世界の顔データセットを2つ提示する。
論文 参考訳(メタデータ) (2022-05-12T17:03:57Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
NeurIPS 2020 Hide-and-Seek Privacy Challengeは、両方の問題を解決するための新しい2トラックの競争だ。
我々の頭から頭までのフォーマットでは、新しい高品質な集中ケア時系列データセットを用いて、合成データ生成トラック(「ヒッシャー」)と患者再識別トラック(「シーカー」)の参加者が直接対決する。
論文 参考訳(メタデータ) (2020-07-23T15:50:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。